
Summer School in Post-Quantum Cryptography Eötvös Loránd University, Budapest, Hungary

Quantum Computing Exercise Sheet
August 2 & 4, 2022

Most exercises come from Ronald de Wolf’s lecture notes [dW19, Chapters 1, 4&5]. Feel free
to skip exercises that you find too easy or hard. On the last page you can find some hints where
indicated by (H).

Exercises

1.) Compute and write down in both Dirac (bra-ket) and vector notation the following:

(a) (H|0〉)⊗ (H|1〉)
(b) H ⊗H
(c) (H ⊗H)|01〉

2.) Show that surrounding a CNOT gate with Hadamard gates switches the role of the control-bit
and target-bit of the CNOT: (H ⊗H)CNOT(H ⊗H) is the 2-qubit gate where the second bit
controls whether the first bit is negated (i.e., flipped).

3.) Prove that an EPR-pair 1√
2
(|00〉+ |11〉) is an entangled state, i.e., it cannot be written as the

tensor product of two separate qubits.

4.) (H) Prove the quantum no-cloning theorem: there does not exist a 2-qubit unitary U that maps

|φ〉|0〉 7→ |φ〉|φ〉

for every qubit |φ〉.

5.) (Quantum teleportation [BBC+93] – [dW19, Chapter 1.5]) Suppose there are two parties, Alice
and Bob. Alice has a qubit α0|0〉+ α1|1〉 that she wants to send to Bob via a classical channel.
Suppose Alice also shares an EPR-pair

1√
2

(|00〉+ |11〉)

with Bob (say Alice holds the first qubit and Bob the second). Initially, their joint state is

(α0|0〉+ α1|1〉)⊗
1√
2

(|00〉+ |11〉).

(a) What is their joint state if Alice performs a CNOT on her two qubits and then a Hadamard
transform on her first qubit.

(b) Suppose Alice measures her qubits and sends the results to Bob. Show that Bob can
reconstruct the original state of Alice using these two bits of information by applying an
X and / or Z gate on his qubit depending on the bit values.
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6.) For ω = e2πi/3 and F3 = 1√
3

 1 1 1
1 ω ω2

1 ω2 ω

, calculate F3

 0
1
0

 and F3

 1
ω2

ω


7.) (H) Show that the following circuit implements the quantum Fourier transform F8:

|k1〉 H R2 R3

|k2〉 H R2

|k3〉 H

,

where Rs =

(
1 0

0 e2πi/2
s

)
. Can you generalize the construction to F2n?

8.) This exercise is about efficient classical implementation of modular exponentiation.

(a) (H) Given n-bit numbers x and N , compute the whole sequence
x0 mod N, x1 mod N , x2 mod N , x4 mod N , x8 mod N , x16 mod N, . . . , x2

n−1
mod N ,

using O(n2 log(n)) steps.

(b) Suppose n-bit number a can be written as a = an−1 . . . a1a0 in binary. Express xa mod N
as a product of the numbers computed in part (a).

(c) Show that you can compute f(a) = xa mod N in O(n2 log(n)) steps.

9.) Consider the function f(a) = 7a mod 10.

(a) What is the period r of f?

(b) Show how Shor’s algorithm finds the period of f , using a Fourier transform over M = 128
elements.

j

f(s)

|0〉⊗ log(M) H⊗ log(M)

Of

FM

|0〉⊗ log(N)

Write down all intermediate superpositions of the algorithm for this case (don’t just copy
the general expressions, but instantiate them with actual numbers as much as possible, incl.
with the value of the period found in (a)). You may assume you’re lucky, meaning the first
run of the algorithm already gives a measurement outcome j = cM/r with c coprime to r.

10.) (H) Show that computing the discrete logarithm over a cyclic group C = {γn : n ∈ [N ]} of size
N can be reduced to the Hidden Subgroup Problem. That is, for any A ∈ C give an efficiently
computable function f from some group G such that the subgroup H ≤ G on whose cosets f is
constant reveals the value n ∈ [N ] such that γn = A.
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11.) Show that if the number of solutions is t = N/4, then Grover’s algorithm always finds a solution
with certainty after just one Grover step. How many queries would a classical algorithm need
to find a solution with certainty if t = N/4? And if we allow the classical algorithm error
probability say 1/3?

12.) Suppose we have a database with N = 2n binary slots, containing t ones (solutions) and N − t
zeroes. You may assume you know the number t.

(a) Show that we can use Grover’s algorithm to find the positions of all t ones, using an
expected number of O(t

√
N) queries to the database. You can argue on a high level, no

need to draw actual quantum circuits.

(b) (H) Show that this can be improved to an expected number of O(
√
tN) queries.

13.) (Marriott-Watrous rewinding) Suppose you can perform binary projective measurements accord-
ing to the projectors (Π, I −Π) and (|ψ〉〈ψ|, I − |ψ〉〈ψ|). Suppose that initially you hold |ψ〉.

(a) If you first measure (Π, I −Π), what are the possible post-measurement states?

(b) Then, if you measure (|ψ〉〈ψ|, I − |ψ〉〈ψ|), what are the possible post-measurement states?

(c) If you once again measure (Π, I −Π), what are the possible post-measurement states?

(d) Suppose that you continue alternating the measurements until you get back to the original
state |ψ〉. What is the expected number of measurements that you need to perform?

(e) (H) Show that a similar result holds when we replace the binary measurement (|ψ〉〈ψ|, I −
|ψ〉〈ψ|) by (Π̃, I − Π̃) such that Π̃|ψ〉 = |ψ〉, and we only ask that we get back to a state |φ〉
such that Π̃|φ〉 = |φ〉.
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Hints

Exercise 4: Consider what U has to do when |φ〉 = |0〉, when |φ〉 = |1〉, and when |φ〉 is a superposition of
these two.

Exercise 7: Observe that the quantum Fourier transformation maps computational basis states to product
states:

F8 : |k1k2k3〉 7→
1√
8

7∑
j=0

e2πi
j·k
8 |j〉

=
1√
2

(
|0〉+ e2πi·0.k3 |1〉

)
⊗ 1√

2

(
|0〉+ e2πi·0.k2k3 |1〉

)
⊗ 1√

2

(
|0〉+ e2πi·0.k1k2k3 |1〉

)
Exercise 8: You may invoke here (without proof) the algorithm of Harvey and van der Hoeven for fast mul-

tiplication [HvdH21], allowing the multiplication of two n-bit integers mod N using O(n log(n))
steps (where n = dlog2Ne). This is a relatively recent improvement over the better known
Schönhage-Strassen algorithm [SS71, Knu97] which uses O(n log(n) log log(n)) steps.

Exercise 10: Take G := ZN × ZN and define f(x, y) := γxA−y.

Exercise 12: Recall that if there are i solutions, then one variant of Grover’s algorithm finds a solution using
an expected number of O(

√
N/i) queries.

Exercise 13: Consider the singular value decomposition of Π·Π̃, and show that the decomposition corresponds
to a set of mutually orthogonal two (or one) dimensional invariant subspaces that are invariant
under both reflections. (This result is known as Jordan’s lemma.) Then decompose |ψ〉 according
to the right singular vectors.
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