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Fourier Transforms



Quantum Phase Estimation
Given a (black-box) unitary U and one of its eigenvectors |ψ⟩ with unknown eigenvalue e2πiφ

we would like to learn the phase φ ∈ [0, 1) by implementing a map |ψ⟩|0⟩ → |ψ⟩|φ⟩.

Phase estimation circuit when φ = 0.φ1φ2 . . . φn has (at most) n-bits

· · ·
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Quantum Phase Estimation – arbitrary phases
Computing the amplitudes for general φ

1
√

N

N−1∑
t=0

e2πiφt |t⟩
QFTN
→

1
N

N−1∑
t=0

N−1∑
k=0

e2πiφte−2πikt/N |k ⟩

=
1
N

N−1∑
k=0

N−1∑
t=0

e2πi(φ−0.k1k2...kn)t |k ⟩

=
1
N

N−1∑
k=0

e2πi(φ−0.k1k2...kn)N − 1
e2πi(φ−0.k1k2...kn) − 1

|k ⟩ (by geometric summation)

The output distribution in terms of ∆ := φ − 0.k1k2 . . . kn∣∣∣∣∣∣ 1N e2πi(φ−0.k1k2...kn)N − 1
e2πi(φ−0.k1k2...kn) − 1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1N eπNi∆ − e−πNi∆

eπi∆ − e−πi∆

∣∣∣∣∣∣2 (multiply by e−πNi∆

e−πi∆ under | · |)

=

∣∣∣∣∣∣ 1N sin(πN∆)

sin(π∆)

∣∣∣∣∣∣2 (e ix − e−ix = 2 sin(x))

=

∣∣∣∣∣∣sinc(πN∆)

sinc(π∆)

∣∣∣∣∣∣2 (sinc(x) = sin(x)/x)
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Heavy tail
Although, we get the best two estimates with high probability, the distribution has a heavy tail:
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Figure: Plot of
sinc2(πN∆)

sinc2(π∆)
for N = 8 and true phase 1/24.
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Quantum Phase Estimation – error probabilities

The probability of obtaining estimate off by ∆

We just computed it for ∆ ∈ [−1
2 ,

1
2):

sinc2(πN∆)

sinc2(π∆)

▶ The probability of obtaining the best n-bit estimate is when |∆ mod 1| is the smallest.
The worst case is when ∆min = 1

2N :

sinc2(πN∆min)

sinc2(π∆min)
≥

sinc2(πN 1
2N )

sinc2(π 1
2N )

≥ sinc2(π/2) = (
1
π/2

)2 =
4
π2

> 40%

▶ The probability of obtaining one of the two best n-bit estimates corresponds to ∆min,
1
N −∆min. The worst case is once again when ∆min = 1

2N :

sinc2(πN∆min)

sinc2(π∆min)
+

sinc2(πN( 1
N −∆min))

sinc2(π( 1
N −∆min))

≥ 2
sinc2(πN 1

2N )

sinc2(π 1
2N )

≥ 2(
1
π/2

)2 =
8
π2

> 80%
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Boosting

The median trick

Suppose our estimator outputs an ε-precise estimate with probability at least 80%.
▶ Take s independent estimates, and compute their median.
▶ The expected number of estimates within ε-precision is at least 80%.
▶ It is exponentially unlikely in s that at least 50% of estimates are farther than ε.

(See the Chernoff bound.)
▶ When more than 50% of estimates are ε-precise their median is also ε-precise!

Median on the cycle?

▶ Output the most frequently seen element (in case of a tie, choose one randomly).
▶ It is exponentially unlikely that the most frequently seen estimate is not one of the two

best n-bit estimates (as they have jointly probability ≥ 80%).
▶ The output distribution is exponentially concentrated on the two best estimates!

Unfortunately, we cannot ensure that that we get a unique estimate with high probability!
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Unbiased (symmetric) estimator

The random shift trick

Input:
∣∣∣ψ(ϕ)〉 = 1√

N

∑N−1
k=0 e iϕk |k ⟩ (for unknown ϕ), and a parameter n ∈ N

1: Sample a uniformly random n-digit binary number u ∈ [0, 1) and define ξ := 2πu
N

2: Apply multi-phase gate
∑N−1

k=0 e−iξk |k ⟩⟨k | to
∣∣∣ψ(ϕ)〉

3: Perform inverse Fourier transform over ZN and measure the state, yielding outcome j
4: Return φ := 2πj

N + ξ = 2π
N (j + u)

Median on the cycle?

Theorem (Unbiased Phase Estimation – Apeldoorn, Cornelissen, G, Nannicini (2022))

If we run the above Algorithm with n = ∞ in Line 1, then it returns a random phase φ ∈ [0, 2π)
with probability density function

f(φ) :=
N
2π

sinc2(N
2 |ϕ − φ|2π)

sinc2(1
2 |ϕ − φ|2π)

.

Applications: (almost) optimal coherent tomography, improved estimation algorithms for
partition functions, low-depth amplitude estimation, etc.
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The continuous probability density function of estimates
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Figure: Plot of f(φ) for x = ϕ − φ and M = 16.

Can you boost it while keeping the distribution symmetric?
7 / 16



Connecting Discrete and Continuous
Fourier Transforms



Discrete vs. Continuous Fourier Transform

The Continuous Fourier Transform F

f̂(ω) =
1
√

2π

∫ ∞
−∞

e−iωt f(t)dt

F : L2 → L2 is a unitary transformation (on the Hilbert space of square integrable functions)

Periodic Wrapping of Continuous Functions

Let f : R→ C, and r ∈ R+ be a “period”. We define its wrapping as a function [0, r]→ C

f (r)(x) := lim
N∋K→∞

K∑
k=−K

f(x + kr).

Similarly we define discretized wrapping for N ∈ N as a vector in CN defined as

f (r ,N)
j := lim

N∋K→∞

K∑
k=−K

f(
j
N

r + kr).
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Discrete vs. Continuous Fourier Transform

Connection between Discrete and Continuous Fourier transform

f̂ (T ,N) =
√

2πN
T f̂ (

2πN
T ,N)

Terms and conditions apply, but certainly holds for smooth rapidly decaying functions. For
more details see Chen, Kastoryano, Brandão, G (2023).

A Commutative Diagram Representation (ignoring the scalar factor)

F

discretized periodic wrapping

FN

f f̂

f (T ,N)
√

2πN
T f̂ (

2πN
T ,N)
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Continuous Fourier Transform: shift↔ point-wise phase multipl.

Set T = N = 64 and φ = 6/37 – absolute amplitude plot on the circle

Shifted (discretized) Gaussian

f(t) ∝ exp(−(t − 32)2/256),

and its Fourier Transform

|f̂ (N,N)
j | ∝ exp(−(2πj)2/96).

Shifted, phase kicked Gaussian

f(t) ∝ exp(
12π
37

it − (t − 32)2/256),

and its Fourier Transform

|f̂ (N,N)
j | ∝ exp(−(2πj)2/96).
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The key observation
In the Gaussian case due to the rapid decay of the tail we have:

f (T ,N)

|[0,T) ≈ f (T ,N) f̂ (T ,N) =
√

2πN
T f̂ (

2πN
T ,N) f̂ (

2πN
T ,N) ≈ f̂

( 2πN
T ,N)

|[−π,π)

With phase shift

Let us introduce

fφ(t) := f(t) · e2πi·φt

f (T ,N)

φ |[0,T) ≈ f (T ,N) ̂
f (T ,N)
φ =

√
2πN
T f̂

( 2πN
T ,N)

φ f̂
( 2πN

T ,N)
φ ≈ f̂

( 2πN
T ,N)

φ |[2π(φ− 1
2 ),2π(φ+

1
2 ))

Note that changing φ ± 1 does not change anything due to periodic wrapping!
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Compare to vanilla phase estimation

Set N = 16 and φ = 6/37 – absolute amplitude plot on the circle

No phase shift, i.e., φ = 0 Phase shift: φ = 6/37

Bonus in the Gaussian case: we can increase the resolution cheaply!
Increase N, keep T = N and do not change the Gaussian function just its wrapping.
This does not change the “query” complexity just requires a larger QFT .
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Gaussian parameters
Let σ ≈

√
log(1/δ)/ε and f(t) ∝ exp(−t2/(2σ2)). Then

f̂(ω) ∝ exp(−σ2ω2/2).

Implying that the absolute amplitude of |j⟩ in f̂ (N,N) is roughly proportional to (ω← 2πj
N )

exp(−σ2(2πj/N)2/2).

Gaussian tail bound∫ ∞
x

1
σ

e−t2/(2σ2)dt ≤
1
σ

∫ ∞
x

t
x

e−t2/(2σ2)dt =
σ

x

∫ ∞
x

t
σ2

e−t2/(2σ2)dt =
σ

x
e−x2/(2σ2)

To get δ accuracy we need about
√
log(1/δ)σ ≈ log(1/δ)/ε uses of U.

If N = Ω(
√
log(1/δ)σ) = Ω(log(1/δ)/ε), then due to the above tail bound the truncated and

the wrapped (discrete) Gaussians are O (δ) close to each other.
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High accuracy phase estimation in a single run

Idea: use Gaussian amplitudes

▶ Wrapped Gaussian is almost the same as truncated Gaussian due to rapid decay.
▶ Fourier transform of a Gaussian is Gaussian, so we get Gaussian noise!
▶ Choosing parameters appropriately we get an estimator with standard deviation about

1/N (up to logarithmic factors) in a single run without garbage ancilla states.
▶ Initial Gaussian amplitudes can be efficiently prepared – see McArdle, G, Berta (2022)
▶ Further optimized initial weights can give potential constant improvements: use Kaiser

window function from signal processing. See Berry et al. (2022).
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Application to Energy Estimation

Hamiltonian Simulation Using Block Encodings

▶ Suppose we are given a unitary V block encoding of a Hamiltonian H

H = (⟨0̄| ⊗ I)V(|0̄⟩ ⊗ I)

▶ Quantum signal processing efficiently implements e itH by O (t + log(1/ε)) uses of V .
▶ For more details see next week Ewin’s lectures.

Using phase estimation we get an ε-precise energy estimate using Õ (1/ε) uses of U.
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Application to Singular Value Estimation

Block Encoding of an arbitrary matrix

▶ Suppose we are given a unitary V block encoding a (rectangular) matrix A

A = (⟨0|⊗a ⊗ I)V(|0⟩⊗b ⊗ I)

Singular vector estimation

▶ Consider the singular value decomposition

A =
∑

j

σj |uj⟩⟨vj |,

where σj ≥ 0 are the singular values and
∣∣∣uj

〉
,
∣∣∣vj

〉
are the left and right singular vectors.

▶ Similarly to phase estimation we wish to estimate the singular value of a given (right)
singular vector

∣∣∣vj

〉
▶ Similar performance to phase estimation, except we get estimates of ±σj . See Kerenidis

and Prakash (2016), Chakraborty, G, Jeffery (2018), Cornelissen and Hamoudi (2022).
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