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Day 2 — Quantum Phase Estimation &

Connecting Discrete and Continuous
Fourier Transforms



Quantum Phase Estimation

Given a (black-box) unitary U and one of its eigenvectors |y) with unknown eigenvalue e>*/%
we would like to learn the phase ¢ € [0, 1) by implementing a map [)|0) — [y)|e).

Phase estimation circuit when ¢ = 0.¢1¢5 ... ¢, has (at most) n-bits
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Quantum Phase Estimation — arbitrary phases

Computing the amplitudes for general ¢
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Heavy tail
Although, we get the best two estimates with high probability, the distribution has a heavy tail:
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Figure: Plot of for N = 8 and true phase 1/24.



Quantum Phase Estimation — error probabilities

The probability of obtaining estimate off by A
We just computed it for A € [-3, 1):
sinc2(7NA)
sinc?(nA)

> The probability of obtaining the best n-bit estimate is when |[A mod 1| is the smallest.
The worst case is when Apin = 5k
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> The probability of obtaining one of the two best n-bit estimates corresponds to Anin,

4 — Amin. The worst case is once again when Apin = 5
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Boosting

The median trick

Suppose our estimator outputs an s-precise estimate with probability at least 80%.
> Take s independent estimates, and compute their median.
> The expected number of estimates within e-precision is at least 80%.

> |t is exponentially unlikely in s that at least 50% of estimates are farther than &.
(See the Chernoff bound.)

» When more than 50% of estimates are ¢-precise their median is also &-precise!

Median on the cycle?

> Output the most frequently seen element (in case of a tie, choose one randomly).

> |t is exponentially unlikely that the most frequently seen estimate is not one of the two
best n-bit estimates (as they have jointly probability > 80%).

> The output distribution is exponentially concentrated on the two best estimates!

Unfortunately, we cannot ensure that that we get a unique estimate with high probability!



Unbiased (symmetric) estimator

The random shift trick

Input: |y(4)) = «F YN0 eKk) (for unknown ¢), and a parameter n € N

Sample a uniformly random n digit binary number u € [0, 1) and define ¢ := 2%“
Apply multi-phase gate Y3—3 e K|k Xk| to |w/(4))

Perform inverse Fourler transform over Zy and measure the state, yielding outcome j
Return ¢ == 2¥ 4 ¢ = 21(j 4 y)

s e b =

Median on the cycle?

Theorem (Unbiased Phase Estimation — Apeldoorn, Cornelissen, G, Nannicini (2022))

If we run the above Algorithm with n = oo in Line 1, then it returns a random phase ¢ € [0, 2r)
with probability density function

N sincz(%llqb - ¢lox)

27 sinc? (316 - gler)

Applications: (almost) optimal coherent tomography, improved estimation algorithms for
partition functions, low-depth amplitude estimation, etc.
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The continuous probability density function of estimates
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Figure: Plot of f(¢) for x = ¢ — ¢ and M = 16.

Can you boost it while keeping the distribution symmetric?
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Connecting Discrete and Continuous
Fourier Transforms



Discrete vs. Continuous Fourier Transform

The Continuous Fourier Transform #

How) = \/% f : o (1)t

F . Lo — Lo is a unitary transformation (on the Hilbert space of square integrable functions)
Periodic Wrapping of Continuous Functions
Let f: R — C, and r € R, be a “period”. We define its wrapping as a function [0, r] — C

K

0 (x) = Jim D fx+ k).
k=-K

Similarly we define discretized wrapping for N € N as a vector in CN defined as

K ,
(rN)y . . L
= lim > (g + k).



Discrete vs. Continuous Fourier Transform

Connection between Discrete and Continuous Fourier transform

e

f(T.N) — @?(@M

Terms and conditions apply, but certainly holds for smooth rapidly decaying functions. For
more details see Chen, Kastoryano, Brandao, G (2023).

A Commutative Diagram Representation (ignoring the scalar factor)

f U

discretized periodic | wrapping

((TN) — N V2N (5 N)
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Continuous Fourier Transform: shift < point-wise phase multipl.

Set T = N = 64 and ¢ = 6/37 — absolute amplitude plot on the circle

Shifted (discretized) Gaussian
f(t) oc exp(—(t — 32)2/256),
and its Fourier Transform

NN | oc exp(—(2n])2/96).

Shifted, phase kicked Gaussian
12
f(t) o exp(3—7”it — (t-32)2/256),
and its Fourier Transform

|f(NN)| o exp(—(2x])?/96).
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The key observation

In the Gaussian case due to the rapid decay of the tail we have:

(T.N) _ «(T.IN)  f(TN) — V2aNF(ZN NY 32N Ny _ 4(BEN)
fl[O,T) ~ f(T.N)  #(T.N) — Tf( N F(5FN) o f|[_7Tm)

With phase shift

Let us introduce

f(t) := f(t) - €2t

TN o f(T.N) f(/T’W): N3 (5FN)  3(5FEN)  2(3N)
¢|[0,T) @ T ' @ o ll2n(e-1).2n(e+1))

Note that changing ¢ + 1 does not change anything due to periodic wrapping!



Compare to vanilla phase estimation

Set N = 16 and ¢ = 6/37 — absolute amplitude plot on the circle

No phase shift, i.e., o =0 Phase shift: ¢ = 6/37

Bonus in the Gaussian case: we can increase the resolution cheaply!
Increase N, keep T = N and do not change the Gaussian function just its wrapping.
This does not change the “query” complexity just requires a larger QFT.
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Gaussian parameters
Let o ~ +/log(1/6)/e and f(t) o« exp(~t?/(202)). Then

f(w) o exp(—c2w?/2).

Implying that the absolute amplitude of [j) in f(NN) js roughly proportional to (w « %)

exp(=0?(27j/N)?/2).

Gaussian tail bound

foo le_tz/(zo'z)dt < l foo ie_tz/(ZG'z)dt = z foo —tz/(QO'z)dt —X2/(20' )
x O o Jx X X Jx o2 X

To get 6 accuracy we need about +/log(1/6)o ~ log(1/6)/e uses of U.

If N = Q(+/log(1/6)0) = Q(log(1/6)/¢), then due to the above tail bound the truncated and
the wrapped (discrete) Gaussians are O (6) close to each other.



High accuracy phase estimation in a single run
Idea: use Gaussian amplitudes

» Wrapped Gaussian is almost the same as truncated Gaussian due to rapid decay.
> Fourier transform of a Gaussian is Gaussian, so we get Gaussian noise!

» Choosing parameters appropriately we get an estimator with standard deviation about
1/N (up to logarithmic factors) in a single run without garbage ancilla states.

> Initial Gaussian amplitudes can be efficiently prepared — see McArdle, G, Berta (2022)

> Further optimized initial weights can give potential constant improvements: use Kaiser
window function from signal processing. See Berry et al. (2022).



Application to Energy Estimation

Hamiltonian Simulation Using Block Encodings

> Suppose we are given a unitary V block encoding of a Hamiltonian H

H= (0l )V(0)® )

> Quantum signal processing efficiently implements e by O (t + log(1/¢)) uses of V.
» For more details see next week Ewin’s lectures.

Using phase estimation we get an e-precise energy estimate using 5(1 /€) uses of U.
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Application to Singular Value Estimation
Block Encoding of an arbitrary matrix

> Suppose we are given a unitary V block encoding a (rectangular) matrix A

A= ({02 )V(I0)*° ® I)
Singular vector estimation

» Consider the singular value decomposition

A=) ailuXvi
i

where o > 0 are the singular values and |Uj>, |v,> are the left and right singular vectors.

> Similarly to phase estimation we wish to estimate the singular value of a given (right)
singular vector |v,>

» Similar performance to phase estimation, except we get estimates of +o;. See Kerenidis
and Prakash (2016), Chakraborty, G, Jeffery (2018), Cornelissen and Hamoudi (2022).



