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ABSTRACT
We demonstrate the possibility of (sub)exponential quantum speed-

up via a quantum algorithm that follows an adiabatic path of a

gapped Hamiltonian with no sign problem. The Hamiltonian that

exhibits this speed-up comes from the adjacency matrix of an undi-

rected graph whose vertices are labeled by 𝑛-bit strings, and we

can view the adiabatic evolution as an efficient O(poly(𝑛))-time

quantum algorithm for finding a specific “EXIT” vertex in the graph

given the “ENTRANCE” vertex. On the other hand we show that

if the graph is given via an adjacency-list oracle, there is no classi-

cal algorithm that finds the “EXIT” with probability greater than

exp(−𝑛𝛿 ) using at most exp(𝑛𝛿 ) queries for 𝛿 = 1

5
− 𝑜 (1). Our

construction of the graph is somewhat similar to the “welded-trees”

construction of Childs et al., but uses additional ideas of Hastings

for achieving a spectral gap and a short adiabatic path.
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1 INTRODUCTION
Adiabatic quantum computing [14] is an interesting model of com-

putation that is formulated directly in terms of Hamiltonians, the

quantum analog of constraint satisfaction problems (CSPs). The

computation starts in the known ground state of an initial Hamilton-

ian, and slowly (adiabatically) transforms the acting Hamiltonian

into a final Hamiltonian whose ground state encapsulates the an-

swer to the computational problem in question. The final state of
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the computation is guaranteed, by the quantum adiabatic theorem,

to have high overlap with the desired ground state, as long as the

running time of the adiabatic evolution is polynomially large in

the inverse of the smallest spectral gap of any Hamiltonian along

the adiabatic path [3]. This model has been intensely studied, not

only because of its inherent interest, but also because it is the zero-

temperature limit of quantum annealing.

In general, adiabatic quantum computing is known to be equiva-

lent to standard circuit-based quantum computing [1]. However, a

very interesting question is what is the power of adiabatic quantum

computing where all Hamiltonians were “stoquastic”, i.e., restricted

to not having a sign problem. What this means is that in some basis

all off-diagonal terms of 𝐻 are non-positive. Adiabatic quantum

computing with no sign problem includes the most natural case

where the final Hamiltonian is diagonal, and represents the objec-

tive function to be optimized, and the initial Hamiltonian consists

of Pauli 𝑋 operators acting on each qubit, with ground state the

uniform superposition on all the 𝑛-bit strings. This question was

also motivated by understanding the computational limits of the

quantum annealers implemented by the company D-Wave, where

all the Hamiltonians were stoquastic.

Bravyi and Terhal [8] showed that for frustration-free Hamil-

tonians without a sign problem, computing the ground state is

classically tractable, thereby raising the question of whether this

was true for general Hamiltonians without a sign problem. Indeed,

a stronger conjecture was that quantum Monte-Carlo, a widely

used heuristic in computational condensed matter physics, already

provided a technique for an efficient classical simulation. This latter

possibility was ruled out by a result of Hastings and Freedman [20],

who showed the existence of topological obstructions to the con-

vergence of quantum Monte Carlo on such problems.

The question of classical tractability for general Hamiltonians

with no sign problem was open until it was addressed in a recent

breakthrough by Hastings [19], who showed a quasipolynomial or-

acle separation between classical algorithms and adiabatic quantum

computation with no sign problem. Subsequently, Gilyén and Vazi-

rani [18] extended and simplified Hastings’ result. They showed

that there is a (sub)exponential oracle separation of the form 2
𝑛𝛿

between classical algorithms and adiabatic quantum computation

with no sign problem. In Section 2 we present the simplified Hamil-

tonian construction from the latter result, which comes from a

sparse graph with a fairly transparent structure. The separation

is showed for a problem concerning the underlying graph, which

contains two special vertices: ENTRANCE and EXIT. Given the EN-

TRANCE vertex and oracle access to the adjacency list of the graph,

every classical randomized algorithm needs (sub)exponential time
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to find the EXIT vertex on average. However, a simple quantum

walk finds the EXIT vertex in polynomial time, and likewise so does

a simple adiabatic algorithm which carries out a straight line inter-

polation between the initial and final Hamiltonian. In Section 3 we

also review the key ideas behind Hastings’ original construction,

and point out some of its aspects that are potentially useful for

further extensions of the results.

The simple construction presented in Section 2 highlights the

similarities and differences with the well-known “welded-trees”

graph (see Fig. 2 and Section 4) which is the basis of the first

known example of exponential speedup by quantum walks [10].

The welded-trees graph is not suitable for adiabatic computation,

since the ground state has exponentially small support on the roots

of the two trees (the ENTRANCE and EXIT vertices).
1
To see this,

notice that a quantum walk on the welded trees may be viewed as

walking on the symmetric subspace of each level of the trees, and

the Hamiltonian effectively reduces to a path of length 2depth + 1.

This path has uniform edge weights, except at the middle edge,

which has

√
2-times bigger weight. This makes the largest eigenvec-

tor of the path graph decay exponentially from the middle towards

the two ends. The starting point of our construction is the simple

observation that equalizing the edge weights in the level graph on

symmetric subspaces has the effect of fixing the exponential decay

problem. On the other hand, this necessarily makes the underly-

ing graph non-regular, potentially enabling classical algorithms to

detect the structure of the graph [5, 12] and ultimately destroying

the lower bound of [10] that heavily builds on the regularity of the

graph. In order to restore the classical hardness result we use the

approach of Hastings [19], who ensures hardness by “decorating”

the graph by means of attaching a cleverly shaped forest to every

vertex. Another feature that can be seen very concretely in our

simplified construction is the role of the ℓ2 versus ℓ1 normalization

difference in the behavior of the quantum vs. classical walk.

2 MAIN RESULTS
We follow the general framework from [19]. The main idea there

was to start with a graph that the adiabatic algorithm can traverse

efficiently, and to hide that graph within a larger graph as follows:

attach a number of trees to each vertex of the original graph, so

that the attached trees form the bulk of the new graph. Now, the

intuition is that the behavior of a quantum walk versus classical

walk on the attached trees would be governed by their ℓ2 → ℓ2 (i.e.,

spectral) norm versus ℓ1 → ℓ1 norm respectively, and the latter is

quadratically larger. As a result the attached trees only negligibly

affect the ℓ2-weight distribution of the ground state (and so quan-

tum algorithms only suffer from a minor perturbation), while they

dramatically shift the ℓ1-weight distribution of the ground state

away from the original graph. Intuitively speaking this enables

the trees to lure away classical random walks from the original

graph, so that they get lost in the attached “camouflage trees” with

very high probability. Furthermore, by choosing the trees to have a

confusing enough shape, one can ensure that there is no classical

algorithm that can avoid getting drawn into the “camouflage trees”.

1
Nevertheless, if one allows the quantum evolution to also involve higher-energy

states, then a corresponding quantum annealing procedure is known to exhibit an

exponential advantage [23].

Therefore, classical algorithms fail to quickly explore the original

graph, and in our case this ultimately leads to their inability of

efficiently finding the EXIT vertex.

Classical hardness is achieved by constructing hard-to-navigate

trees with a fractal-like structure that are built in a recursive man-

ner, via a sequence of so-called “decorations”. Hastings’ original

decorations [19] rapidly blew up the degrees of the vertices in the

graph, thereby limited the number of subsequent decoration rounds

to logarithmic, permitting only a quasipolynomial separation. We

on the other hand use a modified decoration sequence allowing

polynomially many rounds of decoration, and ultimately leading

to a (sub)exponential separation.

2.1 The Basic Adiabatic Path at the Core of Our
Quantum Algorithm

We begin with a simple underlying problem of starting at one

endpoint of a path on ℓ vertices, and finding the other endpoint of

the path.
2
A simple adiabatic algorithm for this problem is specified

as follows: Let𝐴ℓ denote the adjacency matrix of the path ⟨𝑘 |𝐴ℓ |𝑘 +
1⟩ = ⟨𝑘 + 1|𝐴ℓ |𝑘⟩ = 1, and let the corresponding Hamiltonian be

𝐻ℓ := −𝐴ℓ , while 𝐻
(𝑖)

:= −|1⟩⟨1| and 𝐻 (𝑓 )
:= −|ℓ⟩⟨ℓ |.

1 2 3 ℓ−2 ℓ−1 ℓ
𝐻ℓ· · ·𝐻 (𝑖) 𝐻 (𝑓 )

Consider the simple adiabatic path 𝐻ℓ (𝑠) that first interpolates
between 𝐻𝑖 and 𝐻ℓ , then between 𝐻ℓ and 𝐻𝑓 , so that 𝐻ℓ (𝑠) :=

(1 + 𝑠)𝐻ℓ − 𝑠𝐻 (𝑖)
for 𝑠 ∈ [−1, 0] and 𝐻ℓ (𝑠) := (1 − 𝑠)𝐻ℓ + 𝑠𝐻 (𝑓 )

for

𝑠 ∈ [0, 1].

𝐻 (𝑖) 𝐻 (𝑓 )

𝐻ℓ

𝐻ℓ (𝑠)

𝑠
−1 0 1

1

𝐻ℓ

If one moves slowly enough along this adiabatic path [3, 14], the

quantum evolution maps “ENTRANCE”:= |1⟩ – the initial ground
state of 𝐻 (𝑖)

to “EXIT”:= |ℓ⟩ – the final ground state of 𝐻 (𝑓 )
, since

𝐻 (𝑠) has a gap of size Ω( 1

ℓ2
) for all 𝑠 ∈ [−1, 1], see Appendix A.

Note that if one wishes to use only a simple “straight” adiabatic

path, and stops at 𝑠 = 0, a measurement in the computational basis

still reveals the state |ℓ⟩ with probability at least Ω(ℓ−3) since the
ground state of 𝐻ℓ has Ω(ℓ−

3

2 ) overlap with |ℓ⟩, cf. Appendix A.3

2
We work with undirected and unweighted graphs, but for simplicity allow parallel

edges and self-loops. One can think about parallel edges as simple integer edge weights,

since they are represented in the same way in the adjacency matrix. Ultimately we

will only use self-loops at the two distinguished vertices “ENTRANCE” and “EXIT”.

3
Alternatively we could increase the success probability to Ω (1) by accepting any

vertex in {ℓ/2, ℓ/2 + 1, . . . , ℓ }, thereby effectively defining multiple exits. This task

can be made classically hard as well, similarly to the single EXIT scenario.
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2.2 Making the Task of Finding EXIT
Classically Hard

In order to prove classical hardness we will hide the EXIT vertex in

a larger graph – the new graph will be chosen to allow the quantum

adiabatic algorithm to still be efficient, while making the task of

any classical algorithm very difficult. The id’s of the vertices will be

chosen randomly in order to remove any non-structural hints about

the whereabouts of the EXIT vertex, and the graph will be specified

by oracle access to its adjacency list,
4
together with the ENTRANCE

vertex – one of the two vertices with a self-loop.
5
The task is to find

the EXIT vertex – the other vertex with a self-loop attached. The

graph will have polynomially bounded maximal vertex degree, so

the adiabatic evolution can be efficiently performed by a quantum

computer using (time-dependent) sparse Hamiltonian simulation

techniques [7].

In order to make the task of finding EXIT classically hard we

“blow-up” the path graph of length ℓ via two main modifications,

that we call obfuscation and decoration.

Definition 1 (Obfuscation of a path of length ℓ). We re-
place every vertex that has distance 𝑑 ∈ [𝑘] from terminal vertices
{ENTRANCE, EXIT} by a cluster 𝐶 of 𝑚2𝑑 vertices and call these
the funnel vertices, and replace the other middle vertices (that have
distance 𝑑 > 𝑘) by a cluster of𝑚2𝑘 vertices, and call those the tunnel
vertices. Then we add edges between clusters𝐶 𝑗 and𝐶 𝑗+1 correspond-
ing to neighbor vertices 𝑗 and 𝑗 + 1 in 𝑃ℓ , so that we build an𝑚2-ary
tree (with the terminal vertices as roots) on the funnel vertices. Between
clusters that correspond to vertices with distance 𝑑 ≥ 𝑘 we add edges
along𝑚 random matchings. Additionally, in order to preserve spec-
tral properties we add 2𝑚 self-loops to the ENTRANCE and the EXIT
vertices, and an independently chosen random uniform degree-(2 ·𝑚)
expander graph on each cluster𝐶 𝑗 : 𝑗 ∈ [ℓ]\{1, ℓ}, as in Appendix C.6

Note that the graph on the tunnel vertices is 4𝑚-regular. The

decoration construction, described next, will hang 𝑚 trees from

each vertex of the obfuscated graph, each of them being a complete

(5𝑚 − 1)-ary tree (by a complete tree we mean a tree for which

every node has the same number of children except at the bottom

layer, which is at a fixed depth) on its first poly(𝑚) layers, and then
having gradually less children at later layers. The construction is

motivated by its effect on the tunnel — it will increase the degree of

each tunnel vertices to 5𝑚. Thus, the resulting graph will still be 5𝑚-

regular on the original tunnel vertices, as well as on the surrounding

vertices in the first poly(𝑚) layers of the added trees. This will make

it very difficult for any classical algorithm to distinguishing edges

4
Our graph has 𝑁 = O(exp(poly(𝑚))) vertices, each having at most 𝑑 =

max(5𝑚,𝑚2 + 3𝑚 + 1) neighbors. Let use the notation [𝑁 ] := {1, 2, 3, . . . , 𝑁 }. The
classical adjacency-list oracle𝑂 : [𝑁 ] × [𝑑 ] ↦→ [𝑁 ] ∪ {★} can be queried with the id

of a vertex and a number 𝑘 , and as a response tells the 𝑘-th neighbor of the vertex with

the given id (the neighbors are sorted arbitrarily). If the vertex has less than 𝑘 neigh-

bors (with multiplicity), then the oracle outputs★ as a response. We assume that the

corresponding reversible quantum oracle acts as |𝑖 ⟩ |𝑘 ⟩ |0⟩ → |𝑖 ⟩ |𝑂 (𝑖, 𝑘) ⟩ |𝑛 (𝑖, 𝑘) ⟩,
where 𝑛 (𝑖, 𝑘) is the number of ℎ ∈ [𝑘 − 1] such that 𝑂 (𝑖, ℎ) = 𝑂 (𝑖, 𝑘) . This is a
so-called in-place adjacency-list oracle [6, 17], which can save us a poly(𝑚) factor in
the number of queries used by our quantum algorithms.

5
There are two vertices with a self-loop, andwe know the ENTRANCE vertex, sowe can

simulate both the initial and the final Hamiltonians by using the adjacency-list oracle.

6
We use random expander graphs as in Definition 7, but condition on their spectral

gap being at least𝑚. For large enough𝑚 the effect of conditioning is negligible as

shown by Corollary 9.

between the tunnel vertices from edges that lead away from the

tunnel, thereby making the traversal of the tunnel very slow.

If we would everywhere add a complete (5𝑚 − 1)-ary tree of

depth 𝑑 , then the decoration trees would be easy to detect: after

traversing an edge perform a non-backtracking walk of length 𝑑 , if

one arrives at a leaf it means that the traversed edge is hanging a

decoration tree. Since we cannot add more than exp(poly(𝑚)) new
vertices, the trees must have a bounded depth. Therefore, in order

to circumvent such detection algorithms we should construct trees

where the distribution of the lengths before a non-backtracking

random walk hits the bottom of a tree looks approximately self-

similar, i.e., after going one level deeper in the tree the expected

distribution should not change by more than a (sub)exponentially

small amount. In order to achieve this, the decoration is carried out

in 𝑟 =𝑚𝛿
rounds, giving the attached trees a complex fractal-like

structure.

Definition 2 (Decoration). Let𝐺 = (𝑉 , 𝐸) be a graph. A level- 𝑗
decoration graph 𝐺 𝑗 is obtained from 𝐺 by “decorating” every vertex
𝑣 ∈ 𝑉 by attaching𝑚 (1−𝛿) new trees via an edge to their root. The
attached trees are complete (5𝑚 − ( 𝑗 − 1)𝑚 (1−𝛿) − 1)-ary trees with
depth 𝑗𝑚 (3𝛿+𝑜 (1)) . We define 𝐺 (𝑟 ) as the 𝑟 -round decoration of 𝐺 ,
which is obtained from 𝐺 by applying a level-𝑟 decoration, then
subsequently level-(𝑟 − 1), level-(𝑟 − 2), . . ., level-1 decorations.

The above modified definition of decoration is the key to our im-

proved separation result. Hastings [19] added an increasing number

of decoration trees in every round so that decoration doubled the

maximal degree of the graph in each round. The rapid growth of

the vertex degrees prohibited applying more than logarithmically

many rounds of decoration, which ultimately limited the separa-

tion to being at most quasipolynomial. In contrast, we only add

𝑚1−𝛿
decoration trees in each round, which enables us applying

𝑚𝛿
rounds of decoration, ultimately resulting in a (sub)exponential

classical lower bound. In order to keep the desired increase in clas-

sical hardness despite using fewer decoration trees, we make them

slightly deeper.

The obfuscation construction is motivated by the following con-

sideration: from the viewpoint of the quantum adiabatic algorithm,

the obfuscated graph may be viewed as a path on the clusters from

the ENTRANCE to the EXIT, with a weight of𝑚 on each edge (the

expander graph on each cluster helps enforce this structure during

the adiabatic evolution). This means that for all practical purposes,

the adiabatic quantum algorithm does not notice the obfuscation.

On the other hand, for any classical algorithm, the obfuscated graph

presents a challenge, because the graph looks locally tree-like, and

the underlying path structure is effectively hidden.

Obfuscation is also motivated by the earlier work of Hastings and

Freedman [20] that studied obstructions to quantum Monte Carlo

algorithms. One way to interpret their findings is that the presence

of long cycles in the graph, that are hard to “approximate” by shorter

cycles
7
but nevertheless make important spectral contributions, can

prevent quantum Monte Carlo algorithms from fast convergence.

7
By approximating a cycle with shorter cycles we mean a sequence of shorter cycles

in which subsequent cycles differ only in a few edges. Inapproximable cycles could

emerge from the topological structure of the graph, for example on a (discretized)

torus it is impossible to approximate a cycle wrapping around its “hole” by shorter

cycles.
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ENTRANCE EXIT

𝐶1 𝐶2 𝐶3 𝐶4
· · · 𝐶ℓ−3 𝐶ℓ−2 𝐶ℓ−1 𝐶ℓ

Funnel Tunnel Funnel

Figure 1: An illustration of a random graph that we construct for the separation. The parameters are𝑚 = 2, 𝑘 = 2 and 𝛿 = 0

(note that these parameters are non-representative, but it is hard to draw an example with bigger parameters). The edges
constructed during obfuscation are in black, the expander graphs on the clusters are in blue, and the decoration trees are in
red. For clarity of the picture we only included the expander edges on clusters 𝐶1,𝐶2, and 𝐶4, but they should be added on all
clusters in our construction. Similarly, we only included decoration trees on three vertices (and limited their depth to 1) due
to space constraints, but they should be added to every vertex.

The obfuscation step in fact introduces many long cycles that are

important from a spectral perspective, but classical algorithms have

a hard time recognizing or even finding many of such cycles (see

the following two paragraphs) presenting an obstacle to classical

algorithms.

However, a random walk with Ω(ℓ2) steps can still traverse the

obfuscated tunnel with high probability, enabling the efficient dis-

covery of the EXIT by a randomized algorithm. The decoration

of the obfuscated graph with trees is designed to make the graph

even more difficult to navigate for any classical algorithm. Intu-

itively speaking the trees have a fractal-like structure with poly(𝑚)
levels of self-similarity, and each level of self-similarity will make

the graph twice as difficult to navigate – we prove this rigorously

following an argument by Hastings [19]. At the same time, the dec-

oration has only an insignificant effect on the adiabatic evolution,

since the spectrum of a tree of degree 𝑑 is bounded by 2

√
𝑑 − 1, and

therefore the decoration results in only a slight O
(√
𝑚

)
-magnitude

perturbation, which is too small to close the gap in the spectrum

throughout the adiabatic path.

We start by stating more quantitatively the intuition that the

obfuscated graph on the middle clusters is locally tree-like. After

the obfuscation step the tunnel vertices all have degree 4𝑚. The

main observation is that for a random walk, or in fact any classical

algorithm that makes only (sub)exponentially many queries, the

tunnel section of the graph appears locally like a tree graph of

uniform degree 4𝑚. Indeed, all matchings between the different

clusters and all expander graphs within the clusters are chosen

randomly, so after 𝑞 queries the probability that a new edge query

will close an inner cycle (i.e., a cycle that only contains edges within

the tunnel) has probability O
(
𝑞/𝑚𝑘

)
, so by the union bound after

𝑞 queries the total probability of discovering some inner cycle is at

most O
(
𝑞2/𝑚𝑘

)
.

For simplicity let us assume that ℓ is odd, and set 𝑙 := (ℓ −
1)/2. Consider any classical algorithm that starts at a vertex, 𝑣 ,

in the middle ((𝑙 + 1)-st) cluster; it follows that if the classical
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algorithm makes at most𝑚
𝑘
3 queries, then up to O

(
𝑚− 𝑘

3

)
error we

can assume that the graph looks like a regular tree up to depth 𝑙 −𝑘 .
We will argue below that the decoration makes it (sub)exponentially

difficult to follow a path of length 𝑙 −𝑘 in the original (undecorated)

graph, because local exploration of the graph will be drawn into

the decoration trees which are hard to recognize.
8

It is helpful to understand the case of a single level decoration

with depth-𝑑 trees. Intuitively, if starting from vertex 𝑣 , the middle

section of the obfuscated graph (the tunnel) were actually a tree

(instead of just looking tree-like), and if the classical algorithm was

guaranteed to never make it down to a leaf of any decoration tree

(with depth 𝑑), then we could argue as follows: from the viewpoint

of the algorithm it is exploring a regular (4𝑚 +𝑚1−𝛿 )-ary tree, and

we are asking what is the chance that it finds a vertex that is at

distance 𝑙 − 𝑘 from 𝑣 . In order to find such a distant vertex the

algorithm has to explore at least one path of vertices of length 𝑙 −𝑘 .

The requirement of not encountering a leaf of a decoration tree

forces the algorithm to stay within a (randomly embedded) subtree

of degree 4𝑚 up to depth 𝑙 − 𝑘 − 𝑑 (that is the difference between

how deep the exploration has to go and the depth of the decoration

trees). Due to the random labeling of the tree this clearly fails with

(sub)exponentially high probability at least 1 − (1 −Θ(𝑚−𝛿 ))𝑙−𝑘−𝑑 .
Now, of course, the tunnel is not actually a tree. But notice that

the above intuition can still be made to work as follows: perform a

breadth-first search from the start vertex 𝑣 , and every time a vertex

is encountered, make a new copy of it – so that the number of

vertices at depth ℎ is exactly 4𝑚ℎ
. Now we can argue that from

the viewpoint of the classical algorithm, the vertices at depth 𝑙 −
𝑘 are symmetric under permutation, except when the algorithm

discovers a cycle.
9
(But as we argued above the chance of that

is (sub)exponentially small.) Noting that attaching an isomorphic

collection of graphs to every vertex does not change the above

argument, so we get the following statement:

Lemma 3 (Hardness of avoiding the exploration of decora-

tion trees). Suppose that 𝐺 is a rooted graph with its root 𝑟 having
degree 𝑘 , and all vertices up to distance 𝐷 have degree 𝑘 + 1. Let𝐺 ′ be
the graph where each vertex 𝑣 of 𝐺 gets ℎ distinct complete (𝑘 + ℎ)-
ary trees of depth 𝑑 attached via and edge to their root. Suppose we
have access to a uniformly randomly labeled version of 𝐺 ′( 𝑗) , and
we can perform local exploration starting from the root 𝑟 . Then the
probability that we don’t find a cycle, neither discover a leaf of any
attached tree in𝐺 ′, but discover a vertex 𝑣 in𝐺 ′ at distance 𝐷 form 𝑟

has probability at most (𝑘/(𝑘 + ℎ))𝐷−𝑑 irrespective of the number of
exploration steps.

Since upon traversing the tunnel we need to go through at least

one middle vertex, the above argument assures that we need to

discover at least one leaf of some level-1 decoration tree, in order

to traverse the tunnel. Further levels of the decoration ensure that

8
We can force any classical algorithm to only do local exploration by hiding the graph

among exponentially many isolated vertices, so that querying an unseen vertex label

will lie outside the graph with exponentially high probability. However, this is probably

not needed, as the structure itself shall conceal interesting vertices naturally, as we

will see.

9
The same intuition is expressed slightly more rigorously in [10, Section IV], where

the authors say that a 𝑞-query classical algorithm on a regular graph can be modelled

by a random embedding of a tree of size 𝑞.

discovering such a leaf is (sub)exponentially unlikely unless the clas-

sical algorithm makes at least (sub)exponentially many queries, as

shown by the following inductive lemma. Regarding the inductive

structure, note that the definition of decoration makes it possible to

view 𝐺 as an induced subgraph of the level- 𝑗 decorated graph 𝐺 𝑗 ,

and in turn as an induced subgraph of the recursively decorated

graph 𝐺 ( 𝑗)
, in particular we have 𝐺

( 𝑗−1)
𝑗

= 𝐺 ( 𝑗)
. A we already in-

dicated we will choose 𝑟 =𝑚𝛿
rounds of decoration (for simplicity

let us assume that both𝑚𝛿
and𝑚1−𝛿

are integers), so that𝐺 (𝑟 )
will

look roughly uniform with degree 5𝑚 at every vertex around the

original vertices of 𝐺 .10

Lemma 4 (Cf. [19, Lemma 6]). Suppose we start form the root of a
complete (5𝑚− 𝑗𝑚 (1−𝛿)−1)-ary tree𝑇 of depth𝑑 := ( 𝑗+1)𝑚 (3𝛿+𝑜 (1))

(think of 𝑇 as a tree attached during a ( 𝑗 + 1)-level decoration), and
we are only allowed to explore its decorated version𝑇 ( 𝑗) “locally”, i.e.,
by only querying neighbors of known vertices. If 𝑗 ≤ 𝑚𝛿 , then for
any algorithm the probability of reaching a leaf vertex of 𝑇 using 2

𝑗

queries is at most 3
−(𝑚𝛿−𝑗+1)𝑚𝛿

.

Proof. We can prove this by induction on 𝑗 . For 𝑗 = 1 the

statement is trivial. The induction step is as follows: suppose that

the statement is true for 𝑗 − 1. What we prove is that it requires

at least 2
𝑗
queries to find a vertex that has distance at least 𝑑 from

the root of 𝑇 in the graph 𝑇 ( 𝑗)
with very high probability. For this

we would need to traverse at least 𝑡 := 𝑚3𝛿+𝑜 (1)
edges of 𝑇 (𝑡 is

the increment in the depths of the decoration trees of subsequent

levels). There are two cases:

Case 1: the explored vertices include leaves of at most one deco-

ration tree in 𝑇𝑗 , or

Case 2: the explored vertices include leaves of at least two deco-

ration trees in 𝑇𝑗 .

First we bound the probability of Case 1 happening. By assump-

tion, there is a path in 𝑇 ( 𝑗)
of length 𝑑 := ( 𝑗 + 1)𝑚 (3𝛿+𝑜 (1))

going

from root to leaf of 𝑇 : all vertices on the path are explored. Fur-

thermore, there is at most one level- 𝑗 decoration tree which has an

explored leaf. We bound the probability of Case 1 by case separation:

• If the there is no leaf of 𝑇𝑗 \ 𝑇 that is explored or the first

explored leaf of 𝑇𝑗 \𝑇 is at a distance at least 𝑑 − 𝑡/2 from

the root, then we can apply Lemma 3 to show that this event

has probability at most (1 − Θ(𝑚−𝛿 ))
𝑡
2 .

• On the other hand, if there is a single decoration tree with

an explored vertex whose root is at some depth at most 𝑡/2,

then there is a path of length at least 𝑑 − 𝑡/2 − 1 starting

from a vertex of 𝑣 ∈ 𝑇 such that all vertices along the path

are explored, but no other leaf of 𝑇𝑗 \ 𝑇 is found. We can

once again apply Lemma 3 to bound the probability of this

happening by (1 − Θ(𝑚−𝛿 ))
𝑡
2
−1
.

By the union bound we get that the probability of Case 1 is at

most 2(1−Θ(𝑚−𝛿 ))
𝑡
2
−1 ≤ exp(−𝑚−2𝛿+𝑜 (1) ) ≤ 3

−(𝑚2𝛿 )
irrespective

of how many queries are made.

10
We could in principle modify the definition of decoration by adding more trees to

non-maximal degree vertices, so that the resulting graph will be uniform everywhere,

except at the leafs of the decoration trees. This would probably make the graph even

harder to navigate for a classical algorithm. We will nevertheless stick with the above

definition because it has some aspects that are more convenient for our analysis.
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Now we bound the probability of Case 2 happening. If we make

at most 𝑞 queries, then we find at most 𝑞 root vertices of level-( 𝑗−1)
trees. For each such tree traversing to the bottom of the decoration

tree takes at least 2
( 𝑗−1)

queries by induction, with probability at

least 1− 3
−(𝑚𝛿−𝑗+2))𝑚𝛿

. So by the union bound in order to traverse

to the bottom of 2 such trees one needs at least 2
𝑗
queries with

probability at least 1 − 2
𝑗
3
−(𝑚𝛿−𝑗+2)𝑚𝛿

.

By applying the union bound on the distinct events Case 1 and

Case 2 we can conclude that by using 2
𝑗 ≤ 2

𝑚𝛿
queries we reach

the bottom of the tree𝑇 with probability at most 𝑞3
−(𝑚𝛿−𝑗+2))𝑚𝛿 +

3
−(𝑚2𝛿 ) < 3

−(𝑚𝛿−𝑗+1)𝑚𝛿
. □

Consider the following three events:

Event 1: The algorithm finds a leaf of a top-level decoration tree.

Event 2: The algorithm finds a cycle within the tunnel.

Event 3: Neither of the above two events holds but the algorithm

traverses the tunnel.

If the algorithm finds the EXIT vertex by local exploration of

the graph starting from the ENTRANCE, then it must traverse the

tunnel in particular. Therefore the event of discovering the EXIT is

covered by the union of the above three events. Now we bound the

probability of each of the above three events, assuming that 𝐺 is

the graph that we get by obfuscating a path of length ℓ :=𝑚4𝛿+𝑜 (1)
,

with 𝑘 := 3𝑚𝛿
funnel depth, and the (classical) algorithm makes at

most 𝑞 = 2
𝑚𝛿

queries.

Since the algorithm explores at most 𝑞 root vertices of a top-

level decoration tree, the probability of finding a leaf of any such

decoration tree with 𝑞 queries is at most 𝑞3
−𝑚𝛿

, due to Lemma 4 and

the union bound. Therefore, the probability of Event 1 is bounded

by exp(−Ω(𝑚𝛿 )).
We already discussed that for any algorithm that makes at most

𝑞 queries the total probability of finding a cycle within the tunnel is

at most O
(
𝑞2/𝑚𝑘

)
. Therefore, the probability of Event 2 is bounded

by O
(
exp(−𝑚𝛿 )

)
.

Finally, if the algorithm traverses the tunnel it must reach a

vertex 𝑣 in the tunnel from which it discovers a path of length at

least 𝑙 −𝑘 . As Lemma 3 shows, following a path of length 𝑙 −𝑘 from

a middle vertex without discovering a cycle or a leaf of a top-level

decoration is (sub)exponentially unlikely: its probability is bounded

by (1 − Θ(𝑚−𝛿 ))𝑙−𝑘−𝑑 , where 𝑑 = 𝑚 (4𝛿+𝑜 (1))
– the depth of the

top level decoration trees. Therefore, with the right choice of the

𝑜 (1) term in the definition of ℓ , we can bound the probability of

Event 3 by exp(−Ω(𝑚3𝛿 )).
We can conclude using the union bound, that any classical al-

gorithm that uses 2
𝑚𝛿

queries can reach the EXIT vertex in the

decorated graph with probability at most exp(−Ω(𝑚𝛿 )). In the next
subsection we will see that for preserving the gap we shall choose

ℓ = Θ(𝑚
1

4 ), so we will ultimately choose 𝛿 = 1

16
− 𝑜 (1). Note that

the graph 𝐺 (0)
has at most ℓ𝑚2𝑘 = O

(
exp(𝑚𝛿+𝑜 (1) )

)
vertices and

similarly |𝐺 (𝑚𝛿 ) | ≤ |𝐺 (0) |
(
(5𝑚)𝑚4𝛿+𝑜 (1)

)𝑚𝛿

= exp(𝑚5𝛿+𝑜 (1) ). Set-
ting 𝑛 :=𝑚5𝛿+𝑜 (1)

, we can see that the vertex labels have 𝑛 bits, and

any classical algorithm needs at least exp(𝑛
1

5
−𝑜 (1) ) queries to find

the EXIT with probability greater than exp(−𝑛
1

5
−𝑜 (1) ), providing

the (sub)exponential classical lower bound we claimed.

2.3 Preserving the Adiabatic Path and Its Main
Spectral Properties

The actual adiabatic path that we use will be analogous to the

simple path that we used at the beginning: 𝐻 (𝑠) := (1 + 𝑠)𝐻 − 𝑠𝐻 ′
𝑖

for 𝑠 ∈ [−1, 0] and 𝐻 (𝑠) := (1 − 𝑠)𝐻 + 𝑠𝐻 ′
𝑓
for 𝑠 ∈ [0, 1], where

𝐻 := −𝐴, 𝐻 ′
𝑖
= −𝑚 · |ENTRANCE⟩⟨ENTRANCE| and 𝐻 ′

𝑓
= −𝑚 ·

|EXIT⟩⟨EXIT|.
For the sake of analysis we divide the adjacency matrix 𝐴 =

𝐴𝑃 +𝐴𝐸 +𝐴𝐷 to three parts, the edges corresponding to the original

path graph (𝐴𝑃 ), the edges that belong to the expander graphs on

the clusters (𝐴𝐸 ), and the edges coming from the decoration (𝐴𝐷 ).

The main idea is that for understanding the adjacency matrix

after obfuscation �̃� := 𝐴𝑃 + 𝐴𝐸 we can focus on the “symmetric”

subspace, which is spanned by uniform superpositions |𝐶 𝑗 ⟩ :=
1√
|𝐶 𝑗 |

∑
𝑣∈𝐶 𝑗

|𝑣⟩ over the clusters 𝐶 𝑗 : 𝑗 ∈ [ℓ]. In this subspace the

adjacency matrix looks like that of the original path graph 𝐴ℓ just

with uniform edge weights𝑚. Expander graphs of uniform degree

2𝑚 are added on each cluster𝐶 𝑗 corresponding to individual vertices

𝑗 ∈ [ℓ] of the original path graph in order to make this “symmetric”

subspace have the lowest energy. This enables perfectly preserving

the main properties of the adiabatic path, including a spectral gap

of size Ω(𝑚/ℓ2).
Indeed, let us first focus on the adiabatic path corresponding to

�̃�(𝑠) := −𝐻 (𝑠) + (1− |𝑠 |)𝐴𝐷 .𝐴𝐸 contains no edges between clusters,

but the edges form an expander with uniform degree 2𝑚 within

each cluster 𝐶 𝑗 , so that we can block-diagonalize 𝐴𝐸 according to

the clusters. Clearly, then the largest eigenvalue of 𝐴𝐸 is 2𝑚, and

has multiplicity ℓ , while the uniform superpositions |𝐶 𝑗 ⟩ : 𝑗 ∈ [ℓ]
form an orthonormal basis of the subspace𝑈 corresponding to the

largest eigenvalue, i.e.,
11

⟨𝐶𝑖 |𝐴𝐸 |𝐶 𝑗 ⟩ = 2𝑚 · 𝛿𝑖 𝑗 . (1)

With the right choice of expander graphs, the spectral gap becomes

large, so that for large enough𝑚 the second largest eigenvalue of

𝐴𝐸 is at most𝑚, as follows from Theorem 8. Now observe that the

ℓ-dimensional subspace 𝑈 is also invariant under the linear map

𝐴𝑃 , and that the matrix of 𝐴𝑃 on this subspace is isomorphic
12

to the adjacency matrix 𝐴ℓ of the path of length ℓ with uniform

edge-weights𝑚, i.e.,
13

⟨𝐶𝑖 |𝐴𝑃 |𝐶 𝑗 ⟩ =𝑚 · ⟨𝑖 |𝐴ℓ | 𝑗⟩. (2)

Since𝑈 is also invariant under �̃�(𝑠), we can see that our analysis

of the spectrum of the simple adiabatic path 𝐻 ′(𝑠) directly applies

here as well, and so we get that the spectral gap within𝑈 has size

Ω(𝑚/ℓ2).
Now we show that the second largest eigenvalue of �̃�(𝑠) comes

from the spectrum on𝑈 . Let𝑈 denote the orthogonal complement

11
Here 𝛿𝑖 𝑗 stands for the Kronecker-delta.

12
Note that due to the Perron-Frobenius theorem this representation also shows that

∥𝐴𝑃 ∥ =𝑚 ∥𝐴ℓ ∥ ≤ 2𝑚.

13
This can be seen as follows: if 𝑆 and 𝑇 are disjoint subsets of the vertices of a

graph𝐺 with𝑀 edges between 𝑆 and𝑇 , then for |𝑆 ⟩ := 1√
|𝑆 |

∑
𝑣∈𝑆 |𝑣⟩ and |𝑇 ⟩ :=

1√
|𝑇 |

∑
𝑤∈𝑇 |𝑤 ⟩ we have that ⟨𝑆 |𝐴𝐺 |𝑇 ⟩ = 𝑀√

|𝑆 |·|𝑇 |
.
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of𝑈 , and Π𝑈 denote the orthogonal projection to it. The largest ab-

solute eigenvalue of �̃� on the invariant subspace𝑈 can be written asΠ𝑈 �̃�Π𝑈


, which can be bounded by

Π𝑈𝐴𝑃Π𝑈

+ Π𝑈𝐴𝐸Π𝑈

 ≤
∥𝐴𝑃 ∥ +𝑚, therefore the largest eigenvalue of �̃�(𝑠) on 𝑈 is at most

(1− |𝑠 |) (∥𝐴𝑃 ∥ +𝑚) ≤ (1− |𝑠 |)3𝑚. At the same time, our analysis in

Appendix A shows that the second largest eigenvalue of 𝐴ℓ (𝛼) ≥ 1

for ℓ ≥ 5 (cf. Fig. 2) and thereby the second largest eigenvalue of

�̃�(𝑠) on 𝑈 is at least (1 − |𝑠 |)3𝑚. Thus, we can conclude that the

overall spectral gap of �̃�(𝑠) has size Ω(𝑚/ℓ2).
The second main idea is that the graph of edges added during

decoration form a forest of maximum degree 5𝑚 and thus the cor-

responding adjacency matrix 𝐴𝐷 has spectral norm bounded
14

by

2

√
5𝑚. Therefore, as long as ℓ ≪ 𝑚

1

4 , perturbation by the matrix

( |𝑠 | − 1)𝐴𝐷 cannot close
15

the gap of �̃�(𝑠) which has size Ω(𝑚/ℓ2).
Therefore, choosing ℓ = Θ(𝑚

1

4 ) appropriately ensures that the adi-

abatic path 𝐻 (𝑠) has a spectral gap of size at least Ω(𝑚/ℓ2) around
its ground state energy.

The above two main observations show that the adiabatic path

still maps the ENTRANCE vertex to the EXIT vertex. Since the main

Hamiltonian comes from the adjacency matrix of an undirected

and unweighted graph it has no sign problem.

3 EARLIER CONSTRUCTION
The construction in this paper showing a subexponential separation

is based on that of [18]. A precursor to that construction is in [19],

which showed only a weaker quasipolynomial separation, namely

exp(Θ(log(𝑛)2)). Both [18, 19] use the idea of recursively decorat-

ing graphs, but choose different graphs to decorate; indeed, the

final adiabatic path in [18] turns out to be simpler than that in [19].

In this section, we review two ideas of [19], in the hopes that these

ideas will turn out to be useful in a future further strengthening of

the result. This review will necessarily be very brief and sketched.

3.1 Modified Query Model
The first idea is the so-called “modified query model”. In this model,

the oracle gives less information than in the “original query model”

considered before. In the modified query model, if the algorithm

follows some nonbacktracking path of queries that forms a cycle

(for example, querying a vertex 𝑖 to get some neighbor 𝑗 , querying

𝑗 to get some neighbor 𝑘 , querying 𝑘 to get 𝑖 which is a neighbor of

𝑘), then it is impossible to determine that one has returned to the

start of the cycle (in this case, 𝑖) instead of simply going to some

other vertex which happens to have the same neighborhood as 𝑖 .

14
This is straightforward to show, for example using the argument of Hastings [19]: a

forest of degree at most 𝑑 + 1 can be embedded into a uniform tree that has 𝑑 children

at every level for some finite depth 𝑡 . Due to the Perron-Frobenius theorem the largest

eigenvalue of the forest can be bounded by the largest eigenvalue of the tree, which

can again be bounded by 2

√
𝑑 . The largest eigenvalue of the uniform tree is easy to

bound by reducing it to the path graph of length 𝑡 with edge weights

√
𝑑 ; again it

suffices to considering the “symmetric” subspace similarly to our previous argument.

15
This is again straightforward to show using an argument by Hastings [19]: if the

Hermitian matrix 𝐵 has a spectral gap 3𝛾 around its largest eingenvalue, and the

Hermitian matrix 𝐶 has norm at most 𝛾 , then 𝐵 + 𝐶 has a spectral gap at least 𝛾 .

Indeed, let 𝜆 be the largest eigenvalue and |𝜓 ⟩ the corresponding eigenvector of 𝐵,

then the largest eigenvalue of 𝐵+𝐶 can be lower bounded by ⟨𝜓 |𝐵+𝐶 |𝜓 ⟩ ≥ 𝜆−𝛾 . At
the same time by the Courant-Fischer-Weyl min-max principle we have that the second

largest eigenvalue of𝐵+𝐶 is at most max𝜙 ⟨𝜙 | (𝐼 − |𝜓 ⟩⟨𝜓 |) (𝐵+𝐶) (𝐼 − |𝜓 ⟩⟨𝜓 |) |𝜙 ⟩ ≤
max𝜙 ⟨𝜙 | (𝐼 − |𝜓 ⟩⟨𝜓 |)𝐵 (𝐼 − |𝜓 ⟩⟨𝜓 |) |𝜙 ⟩+max𝜙 ⟨𝜙 | (𝐼 − |𝜓 ⟩⟨𝜓 |)𝐶 (𝐼 − |𝜓 ⟩⟨𝜓 |) |𝜙 ⟩ ≤
𝜆 − 3𝛾 + 𝛾 = 𝜆 − 2𝛾 .

The construction for the modified query model is closely related

to the obfuscation construction of [18].

In detail, we have an infinite set of labels. Each label will corre-

spond to some vertex, but the correspondence is many-to-one; we

describe this correspondence by some function 𝐹 (·). The algorithm
will initially be given some label 𝑙 that corresponds to a vertex

that is the ground state of 𝐻0, the Hamiltonian at the start of the

adiabatic path. A query of the oracle consists of giving it any label

𝑚 that is either 𝑙 or is a label that the algorithm has received in

response to some previous query, as well as giving it any 𝑠 ∈ [0, 1].
The oracle will return some set 𝑆 of labels such that 𝐹 (𝑆) is the set
of vertices with edges to 𝐹 (𝑚) (as well as returning the values of the
corresponding matrix elements if the off-diagonal matrix elements

are non-uniform), and also return the appropriate diagonal matrix

element ⟨𝐹 (𝑚) |𝐻𝑠 |𝐹 (𝑚)⟩. Distinct labels in 𝑆 will have different

images under 𝐹 (·) so that |𝑆 | is equal to the number of neighbors.

The labels in 𝑆 will be chosen as follows: if label 𝑚 was re-

ceived in response to some previous query on a label 𝑛, so that

⟨𝐹 (𝑛) |𝐻𝑠 |𝐹 (𝑚)⟩ is nonzero and hence 𝐹 (𝑛) ∈ 𝐹 (𝑆), then label 𝑛

will be in 𝑆 , i.e., we will “continue to label 𝐹 (𝑛) by label 𝑛”. However,
for all other vertices 𝑗 with a nonvanishing matrix element to 𝐹 (𝑚),
there will be a new label (distinct from all previous labels) to label

the given vertex 𝑗 , i.e., a new label 𝑜 such that 𝐹 (𝑜) = 𝑗 .

Thus, a sequence of queries by the algorithm, can be described

by a tree, each vertex of which is some label, with neighboring

vertices in the tree corresponding to vertices which are neighbors.

We claim that it suffices to prove a separation in the modified

query model in order to obtain (almost the same) separation in

the original query model. To do this, we “blow up” each vertex,

replacing it with a cluster of exponentially many (in 𝑛) vertices; for

example, we may replace each with 2
𝑛
vertices. We then replace

each edge by 2
𝑛
edges, these edges randomly matching the vertices

in the corresponding clusters.

We also add edges to the graph within each cluster of vertices

on some expander graph within the cluster. Define an isometry

from the Hilbert space of the original graph to that of the blown up

graph which maps each vertex of the original graph to the uniform

superposition of vertices in the corresponding cluster. We choose

these added edges so that the ground state and first excited states

are given by, up to small error, by applying this isometry to the

ground and first excited states on the original graph.

We can regard the 2
𝑛
vertices in each cluster of the “blown

up” graph as corresponding to different labels for vertices in the

original graph. Then, in using the original query model for this

“blown up” graph, it becomes exponentially unlikely to receive the

same label twice unless one follows a backtracking path, and so

indeed it suffices to consider the modified query model.

3.2 Estimating Ground State Energy and
Distinguishing Graphs

In [19] an 𝑂 (poly(1/𝜖))-time adiabatic (sign-problem-free) pro-

tocol is given for estimating the ground state energy of a sign-

problem-free Hamiltonian (with polynomially bounded norm) up

to 𝜖-precision, given a basis state, that we call the “start vertex”,

which has Ω(𝜖) overlap with the ground state. To be more pre-

cise about what is meant by “estimating”: given a polynomially
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bounded sign-problem-free Hamiltonian 𝐺 and a start vertex, and

given the promise that the ground state energy of 𝐺 is not in the

interval [𝐸 − 𝜖, 𝐸] for some 𝐸 and the further promise
16

that 𝐺

has a spectral gap Ω(1/poly(𝜖)), then there is an adiabatic path
17

with gap Ω(1/poly(𝜖)) so that measurement of the final state in

the computational basis solves the decision problem of whether the

ground state energy is > 𝐸 or < 𝐸 − 𝜖 .

On the other hand, a pair of graphs are constructed in [19], with

poly(1/𝑛)-difference in their ground state energies, such that dis-

tinguishing them necessarily takes much longer classically. This

then almost gives the needed separation between the power of

adiabatic quantum computation with no sign problem and classical

algorithms. However, there are two issues. First, the adiabatic path

constructed to solve the decision problem does not satisfy the re-

quirement that the ground state at the end of the path be a single

basis state, but rather may be a superposition. Second, a classical

algorithm which simply “guesses” which graph it is given answers

the decision problem correctly with probability 1/2. To resolve both

these problems, some further technical steps are done as sketched

in Section 3.2.2. These technical steps show that to prove a bound

on the number of classical queries to determine (with at least a

non-negligible probability of being correct) the final basis state at

the end of an adiabatic path, it suffices to prove a lower bound on

the number of queries in a problem of distinguishing graphs.

In this problem of distinguishing graphs, there are two sparse

graphs, 𝐶 and 𝐷 , and the ground state energy of 𝐶 is smaller than

that of 𝐷 by at least an inverse polynomial amount. Each graph

has a privileged vertex, called the “start vertex”. The problem is

to correctly determine, given a graph randomly chosen to be 𝐶 or

𝐷 with equal probability, which graph it was with probability at

least 2/3. There is a promise that the ground state has amplitude

at least inverse polynomial amplitude on the start vertex and that

the Hamiltonian on each graph has at least an inverse polynomial

spectral gap. Queries of the graph are in the modified query model,

with the first vertex being the start vertex; further, every query

of a label corresponding to the start vertex returns the additional

information that it is the start vertex.

Note that if we were not given a start vertex, but simply asked to

estimate the ground state energy of some graph, this would clearly

require an exhaustive search of the graph (for example, all vertices

might be degree 0, except for one vertex in 𝐶 with a self-loop, in

which case distinguishing them would require a search to find this

self-loop). However, the start vertex gives additional information,

similar to an adiabatic path.

3.2.1 Solving the Decision Problem. The path to solve the decision

problem for the ground state energy is as follows. Consider a system

with computational basis states labelled by vertices of a graph 𝐺

as well as by an additional basis state |0⟩. We will label the basis

state corresponding to the start vertex of 𝐺 by |𝑠⟩ (hopefully no

confusion will arise with the use of 𝑠 as a parameter in the path).

Consider the two parameter family of Hamiltonians

𝐻 (𝑡,𝑈 ) = −𝑈 |0⟩⟨0| + 𝑡

(
|0⟩⟨𝑠 | + |𝑠⟩⟨0|

)
+ 𝐻 (𝐺), (3)

16
This further promise is in fact only required if the ground state energy of 𝐺 is

< 𝐸 − 𝜖 .
17
If the promise is violated, then we do not lower bound the gap of the path.

where 𝐻 (𝐺) is the Hamiltonian corresponding to the graph 𝐺 . We

take 𝑡 < 0 so that the Hamiltonian has no sign problem.

Now consider a path of Hamiltonians starting at very negative

𝑈 and with 𝑡 = 0 (so that initially the ground state is |0⟩ regardless
of 𝐺), then making 𝑡 slightly negative and increasing 𝑈 to 𝐸 − 𝜖/2,

followed by returning 𝑡 to zero. At the end of this path, if the ground

state energy is > 𝐸, the ground state of the Hamiltonian will still

be |0⟩ but if the ground state energy is < 𝐸 − 𝜖 , the ground state of

the Hamiltonian will be the ground state of 𝐻 (𝐺). Note that it is
necessary to have a nonzero 𝑡 in the middle of this path; if 𝑡 were

kept equal to zero then there would be a level crossing at which

the gap would vanish; instead, the nonzero 𝑡 and nonzero overlap

of the start vertex with the ground state ensure the gap stays open.

Indeed, it is possible to choose 𝑡,𝑈 along the path so that the gap

of this path is inverse polynomial.

3.2.2 Ending the Path at a Single Basis State. Unfortunately, our
path of Hamiltonians does not satisfy the condition that the ground

state of the Hamiltonian at the end of the path be a single basis

state rather than a superposition.

We might try to solve this by concatenating the path of Hamilto-

nians above with an additional path that decreases the Hamiltonian

on the graph to zero while adding an additional negative term on

the start vertex so that if the graph is 𝐶 the final basis state is on

the start vertex, while if the graph is 𝐷 the final basis state is |0⟩.
This still however does not give us a good lower bound on the clas-

sical number of queries: for this path 𝐻𝑠 , a classical algorithm can

determine the ground state at the end of the path (which we will

assume to occur at 𝑠 = 1) by querying the oracle three times, first

querying ⟨0|𝐻1 |0⟩, then querying the oracle to find the neighbors

of |0⟩ in the middle of the path (so that it can determine the start

vertex 𝑠), and finally querying ⟨𝑠 |𝐻1 |𝑠⟩.
So, we use an additional trick, the additional “technical steps”

mentioned above. We consider 𝑛 different copies of the problem

defined by Hamiltonian Eq. (3) “in parallel”, i.e., taking the sum

of Hamiltonians on the tensor product Hilbert space. For each of

these 𝑛 copies, we choose 𝐺 to be either 𝐶 or 𝐷 independently, so

that there are 2
𝑛
possible instances; let 𝐺𝑖 be the graph on copy

𝑖 . At the end of the path, the ground state is a tensor product of

|0⟩ on some copies and the ground state of 𝐻 (𝐶) on some other

copies. We then use this property of the ground state as a kind of

key to find an entry in a database: we add an additional diagonal

term which is large and negative on tensor product basis states

which are products of basis state |0⟩𝑖 for all copies for which𝐺𝑖 = 𝐷

and of basis states corresponding to vertices of 𝐺𝑖 for all copies

on which 𝐺𝑖 = 𝐶 . Finally, we use a modified version of the trick

above of concatenating with an additional path that decreases the

Hamiltonian on each graph to zero while adding an additional

negative term on the start vertex; now we add the term on the start

vertex for both graph 𝐶 and 𝐷 so that queries of this term do not

reveal the graph. These additional diagonal terms are both added

after 𝑡 = 0, so the Hamiltonian does not couple |0⟩ to |𝑠⟩. The large
negative term added on the given tensor product states ensures

that the ground state stays in the space spanned by those tensor

product states, with a large gap to all other states. Then, the unique

ground state of 𝐻1 is given by the product of |0⟩ on all copies for

which𝐺𝑖 = 𝐷 and of the start vertex for all copies on which𝐺𝑖 = 𝐶 .
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If the algorithm cannot distinguish graphs 𝐶, 𝐷 with sufficiently

large probability, it has no way to find this particular choice given

the 2
𝑛
possible choices of graphs.

4 RELATION TO THEWELDED-TREES
CONSTRUCTION AND QUANTUMWALKS

Our graph in Section 2 is reminiscent to the welded-trees construct

[10]. The main difference from the welded-trees construction is

that our graph has highly non-uniform degree distribution. This

is necessary for getting a polynomially large overlap between the

ENTRANCE and EXIT vertices, and the largest eigenvalue of the

adjacency matrix. (Indeed, a uniform degree-𝑑 graph has largest

eigenvalue 𝑑 , and the corresponding eigenvector is a uniform su-

perposition over all vertices.) Therefore the analysis of [10] that

heavily relied on the uniformity of the welded-trees graph, does

not apply here, and a different construction was necessary. Our

modification is very natural: simply weld the trees with less edges,

in order to get the sought polynomial overlap with the ENTRANCE

and EXIT vertices. But there is a difficulty here arising from the

fact that the non-uniform degrees can give away the structure of

the trees, allowing fast traversal [5, 12]. A first attempt is to add a

longer middle section, or tunnel, between the trees — but unfortu-

nately a random walk can still traverse such a tunnel. Nevertheless,

the tunnel is uniform and looks locally tree-like, and we can utilize

these properties to hide the edges of the original graph, by adding

“camouflaged” decoration trees, motivated by [19]. This combines

the advantages of the welded-trees construction [10] with that of

Hastings [19] to obtain the subexponential separation.

The similarity to the welded-trees construction hints at the pos-

sibility to use a natural quantum walk algorithm in addition to

the adiabatic path that we described. Since we have adjacency-list

access to the graph, we can implement an efficient block-encoding
[17] of its adjacency matrix divided by the maximal degree (𝑚2 +
𝑚 + 1) (i.e., a quantum circuit which corresponds to a unitary

matrix 𝑈 whose top-left corner equals 𝐴/(𝑚2 + 𝑚 + 1)), using
just 2 queries. Such a block-encoding can be used for running a

Szegedy-type discrete quantum walk [2, 9, 24]. Let |𝜓 ⟩ denote the
top eigenvector of 𝐴; we can approximately “project” this block-

encoding to a block-encoding 𝑈 ′
of |𝜓 ⟩⟨𝜓 | via quantum singular

value transformation [17, 22] according to a low-degree Õ
(
𝑚

3

2

)
polynomial approximation of the threshold function filtering out all

non-maximal eigenvalues [16, 21]; this𝑈 ′
can be implemented us-

ing Õ
(
𝑚

3

2

)
queries. Applying this block-encoding to |ENTRANCE⟩

results in a polynomially large overlap with the |EXIT⟩ vertex,

since ⟨EXIT| |𝜓 ⟩⟨𝜓 | |ENTRANCE⟩ = |⟨𝜓 |ENTRANCE⟩|2 = Ω(ℓ−3)
= Ω(𝑚− 3

4 ). Using amplitude amplification this gives an Õ
(
𝑚

9

4

)
-

time quantum query algorithm.

Alternatively, the above approximate threshold polynomial can

be decomposed into a linear combination of Chebyshev polynomi-

als, where the coefficients have ℓ1
-weight at most Õ

(
𝑚

3

4

)
. Since

the Szegedy quantum walk effectively applies a Chebyshev poly-

nomial to the block-encoded adjacency matrix [2, 9, 16], it enables

a linear combination of unitaries (LCU) [11, 13, 17] based imple-

mentation of an Ω̃(𝑚
3

4 )-subnormalized block-encoding of |𝜓 ⟩⟨𝜓 |.

This algorithm can be simplified [4] by randomly picking a time

𝑡 ∈ [Õ(𝑚3/2)], and applying 𝑡-steps of the Szegedy walk to the

input state |ENTRANCE⟩. It is not difficult to show [4] that mea-

suring the final state of this plain quantum-walk-based algorithm

finds the EXIT with probability Ω(1/poly(𝑚)).

5 DISCUSSION
In this paper we have demonstrated the possibility of a (sub)expo-

nential quantum speedup via an adiabatic evolution where the in-

stantaneous Hamiltonians have spectral norm at most poly(𝑛) and
the spectral gap is at least 1/poly(𝑛), furthermore the Hamiltonian

has no sign problem, i.e., all of its matrix elements are non-positive.

In order to prove such a big separation we worked in an oracle

model, where a poly(𝑛)-sparse graph is given via its adjacency list,

whose adjacency matrix described the Hamiltonian. The adiabatic

path has very nice additional properties: the initial and the final

Hamiltonians are diagonal, and the path consists of two “straight

lines”; in fact only following the first “line segment” already pro-

vides the (sub)exponential quantum speedup, but then the final

Hamiltonian is non-diagonal. Our result heavily builds on ideas

recently introduced by Hastings [19], but simplifies and improves

those in several ways: Hastings’ original result only showed a

quasipolynomial quantum speed-up, and used significantly more

complicated Hamiltonian paths. Additionally, our problem features

a natural quantum walk algorithm, providing a new example of a

(sub)exponential speedup via a simple quantum walk.

In order to get a (sub)exponential quantum speedup, we used

a graph where the top eigenvector’s ℓ2
-weight is concentrated on

the essential structural parts of the graph, whereas the ℓ1
-weight is

concentrated on some “camouflaging decorations”. This ℓ1
-weight

shift already happened after one level of decoration which intu-

itively ruled out efficient simplistic Monte Carlo algorithms. In

order to rule out any efficient classical algorithm we added a poly-

nomial number of decoration layers, effectively hiding the essential

structure of the graph from any classical algorithm.

We conjecture that it should be possible to improve the expo-

nent of our (sub)exponential lower bound to exp(𝑛1−𝑜 (1) ) for some

simple adiabatic path with no sign problem. In fact, we think that a

fine-tuned version of the construction discussed in this paper might

already exhibit such a separation. We already hinted at the possibil-

ity of some improved decoration structure in Footnote 10, and there

are other potential improvements that shall improve the exponent.

For example the use of the union bound over all encountered roots

inside the proof of Lemma 4 is probably unnecessary, and ultimately

one might not need to increase the depth of the decoration trees

between various levels as rapidly as we do in Definition 2.

The big open question that remains is whether one can get a

superpolynomial speedup via an adiabatic path that has no sign

problem, and comes from a local Hamiltonian. Such a speedup could

have important practical implications, since D-Wave’s quantum

annealers have such restrictions. However, proving such a result

requires proving a superpolynomial circuit lower-bound for a non-

oracular problem, which is beyond the reach of currently known

techinques in theoretical computer science.
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A THE SPECTRAL GAP OF THE ADIABATIC
EVOLUTION ON THE PATH GRAPH

In this appendix we prove that the energy gap around the ground

state of𝐻ℓ (𝑠) is at least Ω(1/ℓ2) for all 𝑠 ∈ [−1, 1]. Since ∥𝐻ℓ (𝑠)∥ =
Θ(1), this is equivalent to proving that𝐻ℓ (𝑠)/∥𝐻ℓ (𝑠)∥ has a spectral
gap of size Ω(1/ℓ2) around its ground state energy. We prove the

latter, but using a more convenient parametrization.

Consider the Hamiltonian 𝐴ℓ (𝛼) := 𝛼 |0⟩⟨0| + 𝐴ℓ , for 𝛼 ∈ R+.
We will show that the smallest eigenvalue gap of 𝐴ℓ (𝛼) is at least
Ω(1/ℓ2). This will imply that the spectral gap of 𝐴ℓ (𝛼) around the

largest eigenvalue is Ω((1 + 𝛼)/ℓ2), which in turn implies that the

spectral gap around the ground state energy of −𝐴ℓ (𝛼)/∥𝐴ℓ (𝛼)∥
is at least Ω(1/ℓ2) proving that 𝐻 ′(𝑠) has an Ω(1/ℓ2)-large gap

around its ground state energy.

Now we turn to analyzing 𝐴ℓ (𝛼). We claim that the eigenvec-

tors and eigenvalues of 𝐴ℓ (𝛼) are all associated to solutions of the

quasimomenta equation

𝑓ℓ (𝑝) :=
sin((ℓ + 1)𝑝)

sin(ℓ𝑝) = 𝛼. (4)

Indeed the vector |𝜓𝑝 ⟩ :=
∑ℓ

𝑗=1
sin( 𝑗𝑝) | 𝑗⟩ is always an eigenvector

of 𝐴ℓ (𝛼) with eigenvalue 2 cos(𝑝), whenever 𝑝 is a solution of

Eq. (4). Since 𝑓ℓ (𝑝) and cos(𝑝) are both symmetric and 2𝜋 periodic

it suffices to concentrate on solutions within the interval [0, 𝜋].
We show that for 𝛼 ∈ [0, ℓ+1

ℓ ) there are ℓ distinct 𝑝 ∈ [0, 𝜋]
solutions to 𝐸𝑞. (4), and there are ℓ − 1 such solutions otherwise.

For 𝛼 = ℓ+1

ℓ the additional eigenvalue is 2 which can be obtained as

the limit of the largest eigenvalue as 𝛼 goes to
ℓ+1

ℓ from below and

corresponds to the “pseudo-solution” 𝑝 = 0+ corresponding to the

eigenvector |𝜓0+⟩ :=
∑ℓ

𝑗=1
𝑗 | 𝑗⟩. If 𝛼 > ℓ+1

ℓ , then there is a complex

solution to Eq. (4), which corresponds to the unique real solution

𝑥 of
sinh( (ℓ+1)𝑥)

sinh(ℓ𝑥) = 𝛼 giving eigenvalue 2 cosh(𝑥) and eigenvector

|𝜙𝑥 ⟩ :=
∑ℓ

𝑗=1
sinh( 𝑗𝑥) | 𝑗⟩.

We proceed by showing that on every interval ( 𝑗−1

ℓ 𝜋,
𝑗
ℓ 𝜋) for

𝑗 ∈ [ℓ] the function 𝑓ℓ (𝑝) is strictly monotone decreasing, and the

range of 𝑓ℓ (𝑝) equals R on these intervals apart from the first and

last intervals. For this observe that for all 𝑗 ∈ [ℓ − 1]

lim

𝜀↓0

𝑓ℓ

(
𝑗

ℓ
𝜋 ± 𝜀

)
= lim

𝜀↓0

(
sin( 𝑗𝜋 + 𝑗

ℓ 𝜋 ± (ℓ + 1)𝜀)
sin( 𝑗𝜋 ± ℓ𝜀)

)
= lim

𝜀↓0

(
sin( 𝑗ℓ 𝜋 ± (ℓ + 1)𝜀)

sin(±ℓ𝜀)

)
= ±∞.

𝜋
5

𝜋
3

2
𝜋
5

3
𝜋
5

4
𝜋
5

𝜋

−1

6

5

𝑝

Figure 2: Plot of 𝑓ℓ (𝑝)= sin( (ℓ+1)𝑝)
sin(ℓ𝑝) for ℓ =5; dashed lines show

the solutions of Eq. (4) for 𝛼 =±1.

Further observe that the derivative

𝑓 ′ℓ (𝑝) = 𝑓ℓ (𝑝) ((ℓ + 1) cot((ℓ + 1)𝑝) − ℓ cot(ℓ𝑝))
is non-positive for all 𝑝 ∈ [0, 𝜋] \ N𝜋

ℓ . To see this, observe that

𝑓ℓ (𝑝) changes sign where either sin(ℓ𝑝) or sin((ℓ + 1)𝑝) changes
sign, that is at values 𝑝 ∈ 𝑆ℓ := { 𝑗

ℓ 𝜋 : 𝑗 ∈ [ℓ −1]}∪ { 𝑗
ℓ+1

𝜋 : 𝑗 ∈ [ℓ]}.
Now we show that 𝑔ℓ (𝑝) := ((ℓ + 1) cot((ℓ + 1)𝑝) − ℓ cot(ℓ𝑝)) also
changes sign at exactly the same set of points. Since ℓ cot(ℓ𝑝) jumps

from −∞ to ∞ at 𝑝 ∈ { 𝑗
ℓ 𝜋 : 𝑗 ∈ [ℓ − 1]} and (ℓ + 1) cot((ℓ + 1)𝑝)

jumps from −∞ to ∞ at 𝑝 ∈ { 𝑗
ℓ+1

𝜋 : 𝑗 ∈ [ℓ]} we get that 𝑔ℓ (𝑝)
changes sign at 𝑝 ∈ 𝑆ℓ . One can also see that 𝑔ℓ (𝑝) ≠ 0 for any

𝑝 ∈ (0, 𝜋) implying that 𝑔ℓ (𝑝) changes sign only at points of 𝑆ℓ .

Indeed

𝑔ℓ (𝑝) = 0

⇕
cot((ℓ + 1)𝑝) = ℓ (cot(ℓ𝑝) − cot((ℓ + 1)𝑝))

⇓

cos((ℓ + 1)𝑝) = ℓ

sin(𝑝)︷                                                        ︸︸                                                        ︷
sin((ℓ + 1)𝑝) cos(ℓ𝑝) − cos((ℓ + 1)𝑝) sin(ℓ𝑝))

sin(ℓ𝑝) ,

where the last equality clearly does not hold, since cos((ℓ + 1)𝑝) ∈
[−1, 1], whereas in contrast |𝑙 sin(𝑝) |/| sin(ℓ𝑝) | > 1 for all 𝑝 ∈
(0, 𝜋). This implies that 𝑓 ′

ℓ
(𝑝) = 𝑓ℓ (𝑝)𝑔ℓ (𝑝) is never positive.

We can conclude that 𝑓ℓ (𝑝) is strictly monotone decreasing on

the intervals ( 𝑗−1

ℓ 𝜋,
𝑗
ℓ 𝜋) for all 𝑗 ∈ [ℓ], moreover the range of

𝑓ℓ (𝑝) equals R on these intervals for all 𝑗 ∈ {2, 3, . . . , ℓ − 1}, while
the range of 𝑓ℓ (𝑝) on (0, 𝜋ℓ ) equals (−∞, ℓ+1

ℓ ) and its range on

( ℓ−1

ℓ 𝜋, 𝜋) equals ( ℓ+1

ℓ ,∞). This proves our claim about the number

of solutions of Eq. (4) within the interval (0, 𝜋).
Next, we prove our lower bound on the spectral gap. Firs we

show that for any 𝛼 ∈ R the ℓ or ℓ − 1 different real solutions

of Eq. (4) have an Ω(1/ℓ) gap in between. This implies that the

corresponding eigenvalues also have gaps of size at least Ω(1/ℓ2)
due to the following little lemma:
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Lemma 5. Suppose that 𝑥 < 𝑦 ∈ [0, 𝜋], then | cos(𝑥) − cos(𝑦) | ≥
1 − cos(𝑦 − 𝑥) ≥ (𝑦 − 𝑥)2/𝜋2.

Proof.

cos(𝑥)−cos(𝑦) =
∫ 𝑦

𝑥

sin(𝑧)𝑑𝑧

≥
∫ 𝑦−𝑥

0

sin(𝑧)𝑑𝑧

= cos(0)−cos(𝑦−𝑥)

= 1−cos(𝑦−𝑥) ≥ (𝑦−𝑥)2

𝜋2
. □

For lower bounding the gaps between the solutions to Eq. (4),

observe that for 𝛼 = 1 the solutions are { 2𝑗−1

2ℓ+1
𝜋 : 𝑗 ∈ [ℓ]}, and

similarly for 𝛼 = −1 the solutions are { 2𝑗
2ℓ+1

𝜋 : 𝑗 ∈ [ℓ]}. Since 𝑓ℓ (𝑝)
is strictly monotone decreasing within each interval [ ( 𝑗−1)

ℓ 𝜋,
𝑗
ℓ 𝜋]

for all 𝑗 ∈ [ℓ] we get that for any 𝛼 ∈ [−1, 1] the 𝑗-th solution of

Eq. (4) lies in the interval [ 2𝑗−1

2ℓ+1
𝜋,

2𝑗
2ℓ+1

𝜋]. Thus for every𝛼 ∈ [−1, 1]
any two subsequent solutions have a gap at least

2𝑗+1

2ℓ+1
𝜋 − 2𝑗

2ℓ+1
𝜋 =

𝜋
2ℓ+1

. Similarly for |𝛼 | > 1 the solutions lie outside the intervals

[ 2𝑗−1

2ℓ+1
𝜋,

2𝑗
2ℓ+1

𝜋] : 𝑗 ∈ [ℓ] and are therefore also at least
𝜋

2ℓ+1
apart.

We can conclude that the different real solutions of Eq. (4) have

gaps of size at least
𝜋

2ℓ+1
in between.

We also need to treat the case when 𝛼 ≥ ℓ+1

ℓ , so that there are

only (ℓ − 1) real solutions to Eq. (4). then the largest eigenvalue

is 2 cosh(𝑥) for some 𝑥 ∈ R. Moreover, ⟨1|𝐴ℓ (𝛼) |1⟩ = 𝛼 , so we get

that the largest eigenvalue is at least max{2, 𝛼}. On the other hand

the second largest eigenvalue is 2 cos(𝑝) for some 𝑝 ∈ ( 1

ℓ 𝜋,
2

ℓ 𝜋),
and since 2 cos(𝑝) < 2 − 𝑝2/𝜋2

for all 𝑝 ∈ (0, 𝜋), we get that the
second largest eigenvalue is at most 2 − 1/ℓ2

. Thus the eigenvalue

gap is at least max{1/ℓ2, 𝛼 − 2 + 1/ℓ2} = Ω((𝛼 + 1)/ℓ2).
Thus we have shown that for any 𝛼 ≥ 0 the matrix 𝐴ℓ (𝛼) has

a spectral gap at least Ω((𝛼 + 1)/ℓ2). Since ∥𝐴ℓ (𝛼)∥ ≤ 𝛼 + ∥𝐻ℓ ∥ =
O(𝛼 + 1) we get that the spectral gap of 𝐴ℓ (𝛼)/∥𝐴ℓ (𝛼)∥ is at least
Ω(1/ℓ2) finishing our proof of the fact that 𝐻ℓ (𝑠) has an Ω(1/ℓ2)-
large gap around its ground state energy for every 𝑠 ∈ [−1, 0], and
due to symmetry this result extends to 𝑠 ∈ [−1, 1].

Finally, let us understand the solutions and eigenvalues for the

unperturbed case when 𝛼 = 0. Clearly the ℓ different solutions of

Eq. (4) are { 𝑗
ℓ+1

𝜋 : 𝑗 ∈ [ℓ]}. In this case the largest eigenvalue of

𝐴ℓ (0) = 𝐴ℓ is 2 cos(1/(ℓ +1)), and the corresponding eigenstate

is proportional to

∑ℓ
𝑗=1

sin( 𝑗
ℓ+1

𝜋) | 𝑗⟩. In particular the normalized

eigenstate has an overlap of at least Ω(ℓ−
3

2 ) with any vertex | 𝑗⟩.

B THE EFFECT OF DECORATION ON THE
TOP EIGENVECTOR: ℓ1 VS. ℓ2 WEIGHT

In this appendix we study the effect of decoration on the top eigen-

vector of the adjacency matrix. We first show that for any graph

𝐺 with top-eigenvector𝜓 , the top eigenvector𝜓 ′
of the decorated

graph 𝐺 ′
is proportional to 𝜓 on the original vertices of 𝐺 . (This

result also applies to the Hamiltonians that come from intermediate

𝑠 ≠ 0 Hamiltonians.) Moreover, we show that in the top eigenvector

𝜓 (𝑟 )
of𝐺 (𝑟 )

– the graph that we construct in this paper – the over-

whelming majority of the ℓ2
-weight is supported on the original

vertices of 𝐺 . On the other hand the ℓ1
-weight proportion of the

original vertices of 𝐺 in𝜓 (𝑟 )
is (sub)exponentially small.

Suppose we have a graph 𝐺 = (𝑉 , 𝐸), and we attach 𝑘-copies of

a connected graph 𝑇 to every vertex of 𝐺 via an edge to a distin-

guished vertex 𝑡 of 𝑇 resulting in the new graph 𝐺 ′
. Let 𝜆𝐺 be the

top eigenvalue of 𝐺 with corresponding eigenvector𝜓 . For 𝛾 ∈ R+
let 𝑇 (𝛾) be the graph where we add a self-loop to the vertex 𝑡 with

weight 𝛾 and let 𝜆𝑇 (𝛾) its largest eigenvalue with 𝜙 (𝛾) the corre-
sponding eigenvector normalized such that the amplitude 𝜙𝑡 (𝛾) at
𝑡 equals 1. Then we claim that the top eigenvalue 𝜆𝐺′ equals 𝜙 (𝛾),
where 𝛾 is the unique solution

18
to the equation

𝜆𝐺 + 𝑘

𝛾
= 𝜆𝑇 (𝛾) . (5)

It is easy to verify that the corresponding eigenvector is 𝜓 ′ =

𝜓 +
⊕

𝑣∈𝑉
𝜓𝑣

𝛾

(⊕
𝑗 ∈[𝑘 ] 𝜙 (𝛾)

)
, where

⊕
𝑗 ∈[𝑘 ] 𝜙 (𝛾) stands for the

direct sum of the eigenvectors 𝜙 (𝛾) corresponding to the 𝑘 copies

of 𝑇 attached to the vertex 𝑣 .

Now that we have an analytic description of how the eigen-

vectors and eigenvalues change under decoration it is time to

understand the quantity 𝜆𝑇 (𝛾), when 𝑇 is a complete tree with

𝑑 = Θ(𝑚) children at every level up to depth ℓ ′ for some ℓ ′ ∈
{𝑚3𝛿 ,𝑚3𝛿 + 1, . . . ,𝑚4𝛿 }, and𝑤 is the root of 𝑇 like in our decora-

tions. In our scenario we have 2𝑚 ≤ 𝜆𝐺 , 𝑘 = 𝑚1−𝛿
, and for large

enough𝑚

𝑚 ≤ 𝛾 ≤ 𝜆𝐺 + 1. (6)

To see the latter, consider Eq. (5) and observe that 𝜆𝑇 (𝑚) ≤ 𝑚 +
2

√
𝑑 =𝑚+𝑜 (𝑚) which is smaller than 𝜆𝐺 for large enough𝑚, while

𝜆𝑇 (𝜆𝐺 + 1) ≥ 𝜆𝐺 + 1 which is larger than 𝜆𝐺 +𝑘/𝛾 ≤ 𝜆𝐺 +O
(
𝑚−𝛿

)
for large enough𝑚.

It is again useful to consider the adjacency matrix of 𝑇 (𝛾) in the

“symmetric” subspace, which is spanned by uniform superpositions

|𝐿𝑗 ⟩ = 1√
|𝐿𝑗 |

∑
𝑣∈𝐿𝑗

|𝑣⟩ over the level sets 𝐿𝑗 = {vertices of 𝑇 at

distance 𝑗 form the root}. The symmetric subspace is again invariant

under the linear map𝐴𝑇 (𝛾), and due the Perron-Frobenius theorem
it contains the largest eigenvector, moreover its matrix looks exactly

like the adjacency matrix of a path graph of length-ℓ ′ with a self-

loop of weight 𝛾 at the root, and uniform

√
𝑑 edge weights, cf.

Footnote 13. When 𝛾 ≥ 2

√
𝑑 by our analysis of such graphs in

Appendix Awe know that the largest eigenvalue will be

√
𝑑 cosh(𝑥),

where 𝑥 is the unique solution of the equation

sinh((ℓ ′ + 2)𝑥) = 𝛾
√
𝑑

sinh((ℓ ′ + 1)𝑥), (7)

and the corresponding eigenvector is

∑ℓ′
𝑗=0

sinh((ℓ ′+1− 𝑗)𝑥) |𝐿𝑗 ⟩
up to normailzation. Thus, the eigenvector 𝜙 (𝛾) can be written as

𝜙 (𝛾) =
ℓ′∑
𝑗=0

sinh((ℓ ′ + 1 − 𝑗)𝑥)
sinh((ℓ ′ + 1)𝑥) |𝐿𝑗 ⟩. (8)

18
Since the right-hand side of Eq. (5) is strictly monotone increasing for 𝛾 ∈ R+ and

the left-hand side is strictly monotone decreasing there is at most one solution. Since

both sides are continuous, and in the 𝛾 → 0 limit the left hand side is +∞ and in the

𝛾 → +∞ limit the left-hand side is +∞ there always must be a solution to Eq. (5).

1367



STOC ’21, June 21–25, 2021, Virtual, Italy András Gilyén, Matthew B. Hastings, and Umesh Vazirani

Let us now bound the ℓ2
-weight of 𝜙 (𝛾) as follows

∥𝜙 (𝛾)∥
2
≤

ℓ′∑
𝑗=0

���� sinh((ℓ ′ + 1 − 𝑗)𝑥)
sinh((ℓ ′ + 1)𝑥)

����|𝐿𝑗 ⟩2

=

ℓ′∑
𝑗=0

𝑗−0∏
𝑖=0

sinh((ℓ ′ − 𝑖)𝑥)
sinh((ℓ ′ + 1 − 𝑖)𝑥) ≤

ℓ′∑
𝑗=0

(√
𝑑

𝛾

)𝑗
, (9)

where the last inequality follows from Eq. (7) and the fact
19

that

sinh( (ℎ−1)𝑥)
sinh(ℎ𝑥) is monotone increasing in ℎ for every 𝑥 ≥ 0. Since

√
𝑑
𝛾 = O

(
𝑚− 1

2

)
, Eq. (9) implies that ∥𝜙 (𝛾)∥

2
= Θ(1). Then the ℓ2

-

weight of

 1

𝛾

⊕
𝑗 ∈[𝑘 ] 𝜙 (𝛾)


2

=

√
𝑘
𝛾 ∥𝜙 (𝛾)∥

2
= O

(
𝑚− 1+𝛿

2

)
. There-

fore, after one level of decoration the ℓ2
-weight ratio of the original

eigenvector 𝜓 within the new eigenvector 𝜓 ′
is 1 − O

(
𝑚−(1+𝛿)

)
,

and after𝑚𝛿
levels of decoration the ratio still remains as large as

1 − O(1/𝑚).
Finally, let us bound the ℓ1

-weight of 𝜙 (𝛾) by observing that the

solution of Eq. (7) satisfies 𝑥 ≤ ln(𝛾/
√
𝑑).20

∥𝜙 (𝛾)∥
1
=

ℓ′∑
𝑗=0

sinh((ℓ ′ + 1 − 𝑗)𝑥)
sinh((ℓ ′ + 1)𝑥)

|𝐿𝑗 ⟩
1

≥
ℓ′∑
𝑗=0

sinh((ℓ ′ + 1 − 𝑗)𝑥)
2 exp((ℓ ′ + 1)𝑥)

|𝐿𝑗 ⟩
1

=

ℓ′∑
𝑗=0

exp((ℓ ′ + 1 − 𝑗)𝑥)
exp((ℓ ′ + 1)𝑥) (1 − exp(−2(ℓ ′+1− 𝑗)𝑥))

|𝐿𝑗 ⟩
1

≥ (1 − exp(−2𝑥))
ℓ′∑
𝑗=0

exp((ℓ ′ + 1 − 𝑗)𝑥)
exp((ℓ ′ + 1)𝑥)

|𝐿𝑗 ⟩
1

= (1 − Θ(𝑑/𝛾2))
ℓ′∑
𝑗=0

exp(− 𝑗𝑥)𝑑
𝑗

2

≥ (1 − Θ(𝑑/𝛾2))
ℓ′∑
𝑗=0

(
𝑑

𝛾

)𝑗
. (10)

In our case the obfuscated graph satisfies 𝜆𝐺 < 4𝑚, and for the first

decoration we have 𝑑 = 4𝑚 +𝑚1−𝛿
so that

𝑑
𝛾 = 1 + Ω(𝑚−𝛿 ), there-

fore Eq. (10) implies ∥𝜙 (𝛾)∥
1
= exp(Ω(𝑚2𝛿 )). Thus, already after

one level of decoration the ℓ1
-weight ratio of the original eigen-

vector 𝜓 within the new eigenvector 𝜓 ′
is exp(−Ω(𝑚2𝛿 )). Since

later decorations also satisfy
𝑑
𝛾 = 1+Ω(𝑚−𝛿 ), after applying all𝑚𝛿

levels of decoration the ratio becomes as small as exp(−Ω(𝑚3𝛿 )).
Finally, note that essentially the same argument as above shows

that the ℓ2
-weight of the top eigenvector is concentrated on the

original vertices of the obfuscated graph throughout the entire

adiabatic path. However, the above argument breaks down for

19
This can be seen by− cosh(2𝑥) ≤ −1 ⇒ 𝑒2ℎ𝑥 +𝑒−2ℎ𝑥−𝑒2𝑥−𝑒−2𝑥 ≤ 𝑒2ℎ𝑥 +𝑒−2ℎ𝑥−

2 ⇒ 4 sinh( (ℎ+1)𝑥) sinh( (ℎ−1)𝑥) ≤ 4 sinh
2 (ℎ𝑥) ⇒ sinh( (ℎ−1)𝑥 )

sinh(ℎ𝑥 ) ≤ sinh(ℎ𝑥 )
sinh( (ℎ+1)𝑥 ) .

20
Our analysis of Eq. (4) revealed that Eq. (7) has at most 1 real solution. Then the func-

tion sinh( (ℓ′+2)𝑥)/sinh( (ℓ′+1)𝑥) must be strictlymonotone increasing onR+ due to
its continuous behavior. Since for every 𝑐 > 1 we have sinh( (ℓ′+2) ln(𝑐))/sinh( (ℓ′+
1) ln(𝑐)) = 𝑐 (1 − 𝑐−2(ℓ′+2) )/(1 − 𝑐−2(ℓ′+1) ) > 𝑐 we get 𝑥 ≤ ln(𝛾/

√
𝑑) .

showing that only a tiny a fraction of the ℓ1
-weight is located on

the original graph. Indeed, for |𝑠 | = 1 the top eigenstate is supported

on the original graph, and due to continuity it implies that for |𝑠 | ≈ 1

most of the ℓ1
-weight is located on the original graph.

C SAMPLING RANDOM REGULAR
EXPANDER GRAPHS

Definition 6 (Sampling a random cycle). For any 𝑛 ∈ N
we can sample a uniformly random cycle on the vertex set [𝑛] as
follows: sample an arbitrary permutation of 𝑛 elements, and define
the corresponding edge set as {(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝜋 (𝑖) − 𝜋 ( 𝑗) ≡ ±1

mod 𝑛}.

Note that there is an alternative way to sample uniformly random

cycles which is equivalent to the above: sample a cyclic permutation

𝜋 of [𝑛] independently and uniformly at random, and define the set

of edges so that (𝑖, 𝑗) ∈ 𝐸 iff 𝜋±1 (𝑖) = 𝑗 . However, in our analysis

Definition 6 is more convenient.

Definition 7 (Random 𝑑-regular graphs). For an even 𝑑 an
𝑛 ∈ Nwe denote byH𝑛,𝑑 a distribution of undirected𝑑-regular graphs
𝐺 = (𝑉 , 𝐸) on 𝑛 vertices. Identifying the vertices with the set𝑉 := [𝑛]
the distribution is defined by independently sampling 𝑑/2 random
cycles as in Definition 6, and taking the union of their edges (with
multiplicity).

Theorem 8 ([15, Theorem 1.2]). Fix a real 𝜀 > 0 and an even
positive integer 𝑑 . Then there is a constant, 𝑐 , such that for a random
graph,𝐺 , inH𝑛,𝑑 we have that with probability at least 1 − 𝑐/𝑛𝜏 the
second largest eigenvalue 𝜆2 (𝐴𝐺 ) ≤ 2

√
𝑑 − 1 + 𝜀, where 𝜏 = 𝜏

fund
=

⌈
√
𝑑 − 1⌉ − 1.

Corollary 9. There is a universal constant 𝐶 , such that for every
𝑚,𝑛 ∈ N satisfying 𝑛 ≥ 𝑚2 we have that a random 𝐺 sampled from
H𝑛,2𝑚 satisfies 𝜆2 (𝐴𝐺 ) ≤ 𝑚 with probability at least 1 − 𝐶

𝑚5
.

Proof. Let 𝑘 := ⌊𝑚/8⌋ and 𝑟 := 𝑚 − 8𝑘 for some 𝑘 ∈ N. Then
we can obtain a sample 𝐺 by taking 𝑘 independent samples 𝐻𝑖

fromH𝑛,16, and a sample from 𝐻0 fromH𝑛,2𝑟 and taking the union

of their edges (with multiplicity). Setting 𝜀 = 0.1 and 𝑑 = 16 in

Theorem 8, and observing that 2

√
15 + 0.1 < 7.9, we get that there

is some universal constant 𝑐 ∈ R+ such that for each 𝑖 ∈ [𝑘]

Pr(𝜆2 (𝐻𝑖 ) > 7.9) ≤ 𝑐𝑛−3 ≤ 𝑐𝑚−6 . (11)

By the union bound we get that with probability at least 1 − 𝑐𝑚−5

Eq. (11) holds for all 𝑖 ∈ [𝑘] simultaneously, and therefore we get

that Pr(𝜆2 (𝐺) > 7.9𝑘 + 2𝑟 =𝑚 + 𝑟 − 0.1𝑘) ≤ 𝑐𝑚−5 . If𝑚 ≥ 560, then

𝑟 ≤ 7 ≤ 0.1𝑘 , so for such large𝑚 we also get Pr(𝜆2 (𝐺) > 2𝑚) ≤
𝑐𝑚−5 . Choosing 𝐶 := max(560

5, 𝑐) establishes the statement of the

theorem. □
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