2025 IEEE 66th Annual Symposium on Foundations of Computer Science (FOCS)

A Distillation—Teleportation Protocol for
Fault-Tolerant QRAM

Alexander M. Dalzell*, Andrés GilyénT, Connor T. Hann*, Sam McArdle*,
Grant Salton*¥, Quynh T. Nguyen§, Aleksander Kubica*¥, Fernando G.S.L. Brandio*/!
*AWS Center for Quantum Computing, Pasadena, CA, USA
THUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
fAmazon Quantum Solutions Lab, Seattle, WA, USA
§School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
YYale Quantum Institute & Department of Applied Physics, New Haven, CT, USA
I nstitute for Quantum Information and Matter, Caltech, Pasadena, CA, USA

Abstract—We present a protocol for fault-tolerantly imple-
menting the logical quantum random access memory (QRAM)
operation, given access to a specialized, noisy QRAM device.
For coherently accessing classical memories of size 2", our
protocol consumes only poly(n) fault-tolerant quantum resources
(logical gates, logical qubits, quantum error correction cycles,
etc.), avoiding the need to perform active error correction
on all Q(2") components of the QRAM device. This is the
first rigorous conceptual demonstration that a specialized, noisy
QRAM device could be useful for implementing a fault-tolerant
quantum algorithm. In fact, the fidelity of the device can be
as low as 1/poly(n). The protocol queries the noisy QRAM
device poly(n) times to prepare a sequence of n-qubit QRAM
resource states, which are moved to a general-purpose poly(n)-
size processor to be encoded into a QEC code, distilled, and fault-
tolerantly teleported into the computation. To aid this protocol,
we develop a new gate-efficient streaming version of quantum
purity amplification that matches the optimal sample complexity
in a wide range of parameters and is therefore of independent
interest.

The exponential reduction in fault-tolerant quantum re-
sources comes at the expense of an exponential quantity of purely
classical complexity—each of the n iterations of the protocol
requires adaptively updating the 2"-size classical dataset and
providing the noisy QRAM device with access to the updated
dataset at the next iteration. We show that this classical operation
can be parallelized to poly(n) classical circuit depth, but only
in a model where classical sparse matrix-vector multiplication
for 2"-dimensional vectors can be as well. While our protocol
demonstrates that QRAM is more compatible with fault-tolerant
quantum computation than previously thought, the need for
significant classical computational complexity exposes potentially
fundamental limitations to realizing a truly poly(n)-cost fault-
tolerant QRAM.

Index Terms—quantum information science, quantum algo-
rithm, random access memory, fault tolerant computing, error
correction, teleportation

I. INTRODUCTION

The development of fast and large-scale random access
memory (RAM) has played an indispensable role in the de-
velopment of conventional computing. Early RAM devices as-
sisted in the first demonstrations of stored-program electronic

We refer to arxiv.org/abs/2505.20265 for the full version of this paper.

2575-8454/25/$31.00 ©2025 IEEE
DOI 10.1109/FOCS63196.2025.00008

computers [1]-[3], and today, the availability of efficient high-
speed RAM enables data-intensive computing applications in
areas like machine learning [4], [5]. At an abstract level,
RAM performs the following operation: take as input an n-bit
address x specifying a location in memory, and retrieve one
of the 2™ data items f(x), labeled by x. In practice, the access
time for RAM is astonishingly fast: modern RAM chips can
achieve latency of 10 nanoseconds or faster.! Furthermore, the
RAM runtime is independent of the location of the data within
the memory, and the latency can remain nearly unchanged even
as the overall size of the memory is scaled up.

The idea of quantum random access memory (QRAM)
[7], [8] is to achieve something similar even when the n-qubit
address register is in a quantum superposition) g |z) of
all 2™ addresses. For simplicity, we consider the most basic
version of QRAM: applying a phase (—1)/ (*) onto basis state
|z), where the 2™ binary values f(0), f(1),..., f(2" —1) are
stored in classical memory.

S g VY

—
z€{0,1}"

We refer to the n-bit Boolean function f: {0,1}" — {0,1}
as the classical dataset or data table we want to query. For
each f, the n-qubit unitary V(f) that implements the QRAM
operation is diagonal in the computational basis, with diagonal
+1 entries determined by f. We note that the controlled
V(f) operation® can be used to implement the more familiar

S (=) ®aglz). (D)

z€{0,1}"

'RAM latency is a complex topic, due to the many kinds of memory that
are used in a computer, each type offering benefits and drawbacks on a number
of dimensions including speed, physical size per bit, volatility, and price. See
Ref. [6] and the associated datasheet found there for a concrete example of
an asynchronous static RAM chip achieving 10 nanoseconds latency on 220
memory locations (each storing 8 bits).

2Controlled V (f) is equivalent to (non-controlled) V (f) for a dataset f
with n + 1 address bits; see Appendix A of the full version [9].

formulation of QRAM, which reads the classical data into an
ancilla register as |7)[0) — |2)|f(z)).}

Whereas a single classical RAM query can access at most
one entry of a data table, a single QRAM query suffices to
create a superposition over all 2" entries. The assumption
that QRAM is cheap and available underlies a number of
proposed quantum algorithms (see Refs. [8], [10]-[12] for
relevant surveys), which leverage this ability to offer up to
exponential speedups over their classical counterparts. Of-
ten, the need for QRAM in these algorithms is contained
within an unspecified oracle or data access assumption. For
instance, quantum machine learning algorithms for support
vector machines [13], Gaussian process regression [14], and
recommendation systems [15] require only a polylogarithmic
(in the size of the dataset) number of queries to an oracle that
accesses (in superposition) the entries of a classical matrix or
vector. Similarly, quantum algorithms for solving differential
equations [16]-[21] discretize the equations and invert the
resulting linear systems [22], in some cases incurring only
a polylogarithmic (in the size of the linear system) number of
queries to the classical data defining the instance, such as ob-
ject geometries and boundary conditions. As a final example,
quantum algorithms for solving optimization problems like
semidefinite and linear programs [23]-[30], with applications
in logistics and finance [31], [32], require coherent oracle
access to the classical matrices defining the optimization
problem. In all of these areas, the claimed speedup is typically
dependent upon the assumption that—at least at an abstract
level—the cost of QRAM is similar to that of RAM.

Cheap QRAM assumption: For an arbitrary data
table f, the computational cost of implementing the
unitary operation V(f) from Eq. (1) is poly(n).

Here, the term computational cost is intentionally vague—
depending on the context, it might refer to circuit depth,
physical runtime, energy dissipated, or some other metric—
one must define it more precisely before justifying the as-
sumption (see discussion in Ref. [8]). Focusing on physical
runtime/latency as a metric, the assumption of poly(n) cost is
roughly valid in the case of RAM: one can write down classical
circuits for RAM that have O(n) depth, and in practice actual
RAM chips maintain extremely fast latency even at very large
scale. However, for QRAM, the validity of this assumption
has been the source of significant controversy [8], [10], [33],
[34]. At the root of the issue is the fact that, unlike RAM,
QRAM must be implemented in such a way that information
about which address is being queried is not leaked to the
environment, which would lead to decoherence. Strategies for
preventing this decoherence without also reducing QRAM’s
relative power have so far proved to be elusive.

3In some places in the literature [8], the operation |z)[0) — |z)|f(z)) is
referred to as QRACM, where the additional C emphasizes the fact that the
data f(z) are classical and thus the states |f(z)) are computational basis
states. This distinguishes QRACM from its generalization, QRAQM, where
each |f(x)) can be an arbitrary (possibly multiqubit) quantum state. In this
paper, we do not consider QRAQM, and we refer to QRAM interchangeably
with QRACM.

39

One might try to justify the cheap QRAM assumption
by writing down an O(n)-depth quantum circuit for the n-
qubit unitary V(f) [35]-[38], and then running that circuit
on a general-purpose fault-tolerant quantum processor; assum-
ing gates can be implemented in parallel, O(n) latency is
achievable. This strategy—referred to as “circuit QRAM” in
Ref. [8]—has significant drawbacks. In particular, it requires
Q(2™) logical ancilla qubits and 2(2") classical co-processors
to control the system and perform active error correction on
all its components in parallel. Each logical ancilla may require
dozens or hundreds of physical qubits, leading to an extremely
large device footprint, a conclusion that is further exacerbated
by the presence of a large number of magic state factories for
implementing in parallel the non-Clifford 7" or Toffoli gates in
the circuit, of which there must be at least Q(1/2") [39]. One
estimate for a surface code approach found that quadrillions
of physical qubits would be needed for querying an 8-gigabyte
memory [35]. The opportunity cost of these quantum and
classical resources is steep. For example, the O(2™) classical
co-processors can perform complex tasks like sparse matrix-
vector multiplication for 2™ x 2" matrices in poly(n) time
[8], [10], [34]. Consequently, for circuit QRAM, the cheap
QRAM assumption is only justifiable in a cost model that
essentially precludes the possibility of quantum advantage in
many proposed applications.

Ideally, the QRAM operation would instead be carried out
by a specialized hardware element, separate from the main
general-purpose quantum processor, mirroring how RAM is
performed in a different way than computation on the main
CPU. While the physical size of the QRAM hardware element
would scale as €2(2™)—this is necessary simply to store the
dataset f—the runtime could be as little as O(n). Furthermore,
since the device is specialized for QRAM, it could in principle
be performed passively and ballistically [8], that is, imple-
mented automatically by natural evolution of the system while
requiring at most poly(n) external interventions from classical
control and dissipating at most poly(n) energy.* Constructing
such a device is a formidable engineering challenge; there are
currently no fully convincing proposals on how it could be
done, but nothing rules it out in theory;’ see Fig. la for an
abstract picture of how such a device might be structured.

Yet, even if a passive, physical QRAM device did exist,
it is unclear how it could actually be useful to a fault-

“Reading from a classical RAM can be viewed as a passive operation:
although the circuit for RAM has €(2™) gates/components, these gates are
etched onto the chip and are performed without any external intervention—one
simply needs to set the voltages on the n input pins specifying the desired
address. It is possible to design a RAM circuit that dissipates only O(n)
energy, although since this does not represent a bottleneck in practical systems,
actual RAM chips are better modeled as dissipating O(1/27) energy (memory
is laid out in 2D and in practice an entire row/column is activated, rather than
just a single memory cell) [8], [40].

SWe ignore speed-of-light constraints, which we expect only to be relevant
at large QRAM size [41]. At large enough scale, the speed of light would
prevent both RAM and QRAM from achieving query latency O(n), since the
dataset of size 2" must be embedded in 2 or at most 3 spatial dimensions,
and the time needed for information to travel across the device would be at
least 2(2™/3) (in the case of a 3D embedding).

tolerant quantum computation (FTQC). The ability to apply
the physical QRAM operation at computational cost poly(n)
is not sufficient to justify the cheap QRAM assumption, even
if there are no errors in the QRAM device itself (which is
not realistic anyway). The problem is that, in FTQC, we need
to perform the logical QRAM operation, denoted by V(f),
onto an address register encoded into some quantum error-
correcting (QEC) code. Naively, we could implement V (f) by
un-encoding the n logical qubits into n physical qubits, run-
ning the physical qubits through the physical QRAM device,
and re-encoding the output. However, the un-encoding and
re-encoding processes introduce uncorrectable errors, and any
noise in the physical QRAM device will also propagate into
logical errors on the re-encoded state. An alternative would be
to find a QEC code where the logical V(f) is a transversal
gate, meaning it can be implemented as a tensor product of
poly(n) physical V() gates without the need for un-encoding
and re-encoding. Unfortunately, there are known challenges to
finding such codes [8]. A general n-qubit QRAM gate is in
the n-th level of the Clifford hierarchy (see Section II-B and
Appendix D of the full version [9]), and all known examples
of codes supporting transversal implementation of a gate in
the n-th level have O(2™) qubits [42]-[44]. In fact, there is at
least one example of a gate in the n-th level—the single-qubit
/2™ rotation gate—where a matching lower bound of 2(2")
qubits has been shown for a strong form of transversality [45],
leading one to speculate that a similar lower bound may hold
for QRAM, as well.

Our main contribution is to devise a protocol that im-
plements the logical operation V'(f) fault tolerantly, using
poly(n) queries to a noisy device that can implement the
physical QRAM operation with at least 1/poly(n) fidelity, as
well as poly(n) fault-tolerant operations on a general-purpose
quantum processor—exponentially fewer than the number of
fault-tolerant quantum operations required for circuit QRAM.
The protocol generalizes well-known distillation—teleportation
protocols for non-Clifford gates like the 7' gate and the CCZ
gate. First, the physical V(f) gate is used to prepare many
copies of a faulty physical n-qubit QRAM resource state. Next,
the physical resource states are encoded into a QEC code (the
protocol is agnostic to which one) and distilled into a single
high-fidelity logical resource state. Finally, the high-fidelity
logical resource state is teleported into the computation to
enact the logical QRAM gate, up to a correction which can be
computed classically—our protocol outsources this calculation
to a classical processor as depicted in Fig. 1b. The required
correction is a different logical QRAM gate V ('), where f’ is
determined by f and random measurement outcomes obtained
during the teleportation procedure. The correction V'(f’) is
then implemented in the same way, requiring a correction
of its own, V(f"), where f” is again dependent on f’ and
random measurement outcomes. We show that after iterating
this process for n rounds, no further correction is necessary.
This is a consequence of the fact that, despite its exponential
circuit complexity, the unitary V(f) lies in the n-th level of

40

the Clifford hierarchy [47] for every f, which implies that the
first correction V(f’) is in the (n — 1)-th level, the second
correction V(") is in the (n — 2)-th level, and so on. Our
insights are (i) to notice that these corrections always lie
within the family of QRAM gates of Eq. (1), allowing for a
straightforward recursive implementation, and (ii) to devise a
method for preparing the high-fidelity encoded resource states,
completing the end-to-end workflow for fault-tolerant V().
A no-go theorem in Ref. [8] ruled out a wide class of QRAM
distillation—teleportation protocols; our protocol sidesteps this
theorem by being adaptive and querying the physical QRAM
on different datasets (f, f’, f”, etc.) in each round. We
provide a more complete informal overview of the protocol
in Section II and a detailed error analysis of each step in
Section IV.

By showing how to perform logical V' (f) using poly(n)
calls to physical QRAM, our protocol salvages the potential
utility of the specialized, faulty QRAM device, and it en-
courages a model of quantum computation where QRAM is
performed separately from the main quantum processing unit.

Our protocol also partially justifies the cheap QRAM
assumption, provided that a passive QRAM device can be
constructed. Indeed, if noisy physical QRAM has computa-
tional cost poly(n), then the quantum resources required to
implement fault-tolerant QRAM via our protocol also scales
only as poly(n). The main caveat is that running our protocol
requires a non-negligible amount of adaptive classical compu-
tation of complexity O(2") to compute the required correction
operations (and “reload” the passive QRAM device, so that
it has access to the new classical dataset at the next round
of the protocol), although this complexity may be amenable
to some degree of parallelization. We explore the nuances
of this caveat in Section V: like the RAM operation, this
classical update operation has €2(2") overall gate complexity,
but admits an O(n)-depth classical circuit. However, certain
features—namely, the wire density—of this parallel circuit are
more demanding than that of RAM. We show an equivalence
between the update rule and sparse matrix-vector multiplica-
tion, which clarifies when our scheme can and cannot provide
advantage in applications. For our protocol, this adaptive
classical computation and QRAM reloading appears necessary
in order to avoid revealing which address is being queried even
while using a noisy QRAM device. In Section VII, we pose
the question of whether this reflects an inevitable limitation of
fault-tolerant QRAM or whether a stronger justification of the
cheap QRAM assumption, where both quantum and classical
resources are poly(n), may be possible.

In any case, our protocol can be viewed as trading
O(2"™) quantum resources for O(2") classical resources. That
is, our protocol does not require the O(2") actively error-
corrected quantum resources incurred in circuit QRAM (fault-
tolerant quantum gates, ancilla qubits, magic state factories,
control wiring, classical co-processors, etc.). Instead, it re-
quires poly(n)2™ purely classical resources in addition to only
poly(n) fault-tolerant quantum resources and poly(n) queries

physical QRAM device

poly(n)-size
general—pu(rp)ose FTQC

©000000000000000000
©00000000000000000O0O

ﬁ n-qubit SAOAAAAOSASSOSAASS
g o o
resource StatCS ucunu) ucu ucunuuucu ucunuuucu ucu © o
. SO ARNANRRRANIAN
9(6) physical ST e e e et
L STy
9(5) QRAM device 3
A~ g(4) AP
) e [AN (71)9(“)|w}
9(2) 000,0.0.0.0°0.010°070 0010 070 00 0 0
RARAR AN AR S AN ARSI AN AN
g(1) iterate
n times n-bit
9(0) 3ccess to Flassuéatl measurement outcomes
ataset of size

—

dataset g
classical RAM

(a) Possible structure of physical QRAM
device passively implementing V(g) from
Eq. (1)

RAM < » classical CPU

update dataset

(b) Setup of our protocol

Fig. 1: (a) Ideally, the physical QRAM operation V (g) of Eq. (1) is performed passively by a specialized device. We may
imagine, for example, encoding the address state) a,|z) into the polarization states of n photons, and then sending them
into a pre-manufactured device, where they return having picked up a —1 phase only on branches of the superposition where

g(z) = 1 [8], [46]. This might be accomplished by placing the classical bits g(0), g(1),...

,g(2™ — 1) at the leaves of a

binary tree, selectively routing the photons to the correct leaf based on their polarization, picking up a phase if a photon
exists at location = and g(x) = 1, and then unrouting the n photons. (b) Our protocol utilizes a specialized, physical QRAM
device, which is separate from the general-purpose fault-tolerant quantum processor. The QRAM device is used to create
QRAM resource states on n physical qubits which are moved onto the main processor. The main processor encodes, distills,
and teleports these resource states, generating classical n-bit measurement outcomes, which are sent to a classical CPU. The
classical CPU performs a calculation to update the dataset stored in classical memory (RAM), which is queried by the physical

QRAM device at the next iteration of the protocol.

to a faulty QRAM device. There may be applications where
such a tradeoff is beneficial, since quantum devices will be
significantly slower and more expensive than classical devices
for the foreseeable future.

II. OVERVIEW OF PROTOCOL

A. Warm-up: distillation—teleportation protocol for the T’ gate

In many schemes for FTQC, it is relatively cheap to
implement logical Clifford gates (e.g., they can often be done
transversally). On the other hand, non-Clifford logical gates
like the T gate and the CCZ gate are more expensive; these
gates can instead be performed using distillation—teleportation
protocols. In this section, we review such a protocol for the 7'
gate, a diagonal gate mapping |0) + |0) and [1) — e™/4|1).
Although the CCZ gate is actually a special case of the QRAM
operation from Eq. (1) and thus more directly related to our
protocol, the T' gate provides a gentler introduction because it
is a single-qubit gate.

We discuss distillation and gate teleportation separately,
beginning with gate teleportation. Henceforth, we denote log-
ical states and operations with an overline, for example, we
denote the logical T' gate by T Teleporting T' into a quantum
computation requires the preparation of a resource state, also

41

known as a magic state, which is 7' applied to the equal
superposition state:

1
V2
where |0) and |I) denote the encoded computational basis
for some QEC code (here we are agnostic to which code),
and |[F) = %U@ +|T)). The T gate can then be applied
to an arbitrary quantum state |[@) (on one logical qubit) by
entangling |@) with |T') and making a (logical) measurement,
as follows:

IT) =T[F) = —=(I0) +™/[T)), @)

ifm=0
XTX|@) ifm=1

IT) —— A= m

The logical CNOT gate (a Clifford gate) and the single-qubit
logical measurement are both performed fault-tolerantly within
the QEC code to ensure negligible chance of logical error.
Direct computation verifies that the single-qubit measurement
outcome m € {0,1} is uniformly random, regardless of the
state |@). If the measurement outcome is m = 0, the gate

T is exactly implemented on the top wire. However, if the
outcome m = 1 is obtained, the wrong phase was applied to

@) —

3

the state, equivalent to the gate X T X instead of T' (where
X, Y, Z denote the Pauli operators). To fix this, one must apply
a correction operation when the measurement outcome is 1.
The correction required to undo the erroneous X 7' X gate and
re-do the T gate is the T X TTX gate, which is equal to the
phase gate S = T2, up to a global phase. Crucially, the phase
gate is a Clifford gate, and thus the logical S can typically be
implemented fault tolerantly in a more direct fashion. The full
gate teleportation circuit with the correction is then given by:

“)

The benefit of performing the T gate via gate teleporta-
tion is that the difficulty is reduced to preparing a high-fidelity
|T) state. This state can be prepared through a multistep
process of physical preparation, encoding, and then distillation.
For concreteness, one can consider magic state injection
schemes for the surface code [48]-[51]. Here, the first step
is to prepare the |T') state on a single physical qubit. Next,
an encoding procedure is performed, that is, |T") is mapped
to |T), which is encoded in a d x d surface code patch.
This can be realized by, for instance, preparing a product
state and performing appropriate stabilizer measurements. This
procedure is generally not fault-tolerant; if the underlying
hardware has error rate p, the logical error on the prepared
state is O(p), but the logical error can be kept independent
of how large one makes the code distance d. Some of the
possible logical errors are heralded—they can be detected
by applying certain checks, in which case the procedure
can be restarted from scratch, improving the postselected
fidelity. The final step is magic state distillation, whereby
multiple noisy |T') states are consumed to produce a smaller
number of higher-fidelity |T') states. For example, the 15-to-
1 magic state distillation protocol uses 15 input magic states
of error rate p;,, succeeds with probability 1 — O(p;,), and
conditioned on success, produces a single output magic state
of error rate pou, = O(p3,) [511-[53]. By recursively applying
this protocol, one can distill |T) states with arbitrarily low
error rate even when all physical components have noise rate
p = O(1), provided that p is below a certain threshold for
state distillation.

In some instances, one may not want to perform the
corrective S gate directly. In this case, another option is
to perform the S gate also via gate teleportation, using the
resource state

= () +i1)).

5 =3m=—

®)

SFor some codes, such as the color code [54], the S gate is transversal;
for the surface code, however, it is fold-transversal [55], [56], and therefore
more challenging to implement. One may also prefer to use autocorrected
gadgets [57], [58] that avoid direct implementation of S.

42

The conditional correction required when teleporting S is the
gate SX S'X « S? = Z. While implementing the Pauli Z
gate is typically easy for FTQC schemes, it could in principle

also be implemented by teleporting the resource state

1 _
= (0~).

Teleporting the |—) state requires no correction, regardless
of the measurement outcome, since Z X Z X o I, where
T is the (logical) identity operator. Following this strategy,
we can write the following circuit, which implements the T
gate via three successive teleportations, where the second and
third teleportations are applied only if all prior measurement

outcomes are 1.

=) =2ZIF) ©)

This approach may strike the reader as unnecessary, but
designing the procedure in this iterative way will mirror the
structure of our full protocol for QRAM.

B. Teleportable gates and the Clifford hierarchy

Not all gates can be teleported in the manner of cir-
cuit (4). The key reason it works is that the correction
operation, S, is a Clifford gate. In general, if one attempts to
teleport a diagonal single-qubit logical gate G in this fashion,
the conditional correction is G X GT X [59, Appendix A.1].
Early work on gate teleportation [60] characterized the set
of teleportable gates. It identified a hierarchy of teleportable
gates known as the Clifford hierarchy. Focusing here on logical
gates for consistency with the rest of this section, the logical
Clifford hierarchy is a sequence of sets Cy for k = 1,2,...,
where C; is the set of logical Pauli gates, and Cj, is defined
recursively by

C,={G:GPG €C)_, forall PcC;}. 8)

That is, the k-th level of the Clifford hierarchy are gates
that, under conjugation, transform Pauli gates into gates in
the (k — 1)-th level. We may recognize Cy as the set of gates
that transform Paulis to Paulis—that is, the set of Clifford
gates. The T gate lies in Cs because T X 1T = e~ 1"/45X is
Clifford, TY Tt = e~'"/45Y is Clifford, and T Z T = Z is
Pauli (and therefore Clifford).

Focusing here on single-qubit diagonal gates, if a gate
G lies in Cy, then the teleportation procedure calls to use
the state G|+) as a resource state. The conditional correction
GXG'X is also diagonal and lies in Cr_;. As pointed
out already in Refs. [59], [60], this immediately yields a
recursive procedure for implementing any gate in Cy: prepare
@|¥>; teleport; if outcome 1 is obtained, classically compute

the required correction G’ = GX G' X € Cj_1; prepare

G'|F); teleport; if outcome 1 is obtained, compute the required
correction G = G' X G'T X € Cj,_», etc. Each correction is
one level lower in the hierarchy than the last. After enough
rounds, no further correction will be required, as in circuit (7).

C. Teleporting the QRAM gate

The teleportation strategy for single-qubit diagonal gates
can also be applied to multi-qubit diagonal gates (see, e.g.,
Ref. [59, Appendix A.1]), such as the QRAM unitary V'(f)
from Eq. (1). We define QRAM resource states analogously to
the resource state |T) (cf. Eq. (2)).
T

[T(f)) =V (f)I+)®
ze{o 1}n

f(ﬂ")). (9)

We denote the encoded logical QRAM resource state by
[W(f))

Assuming that we can prepare the encoded resource state
[T (f)), then we may teleport the QRAM gate into an arbitrary
encoded n-qubit state), |T) by making an entangled
measurement, as in the following circuit (cf. circuit (3)).

Zz az|f> ZJL am(_l)f(meam) |T>
(10)
==
SR b e
—o T

Here we emphasize that in the context of our protocol, the
circuit is a logical circuit: all qubits are logical qubits, and both
the upper and lower sets of n logical qubits are constructed
out of n’ > n physical qubits using some QEC code. For
example, one could choose to encode each logical qubit into
its own d x d surface code patch, giving n’ = nd? for that
example. The n logical CNOT gates and n logical single-qubit
measurements in circuit (10) are performed fault tolerantly
within this code, allowing us to neglect the chance of logical
error.

Each possible n-bit measurement outcome m € {0, 1}" is
obtained with uniform probability 1/2", regardless of the state
> . 0a|T). If m = 0™ is obtained, then by direct calculation
(see Section IV-E), we can verify that the gate V(f) has
been correctly applied, yielding the state 3°_ ., (—1)/®)|z).
However, most of the time, we obtain a nonzero measurement
outcome m # 0", in which case the phase (—1)f(®) is applied
onto the basis state |x @ m) rather than |T), yielding the
state 3" o, (—1)/@®™)|7). Here and throughout, ® denotes
bitwise addition, modulo 2.

To correct for this, we need to apply the phase
(—1)/(@&@m)®F(2) onto the basis state |T) for each x; that is,

43

we need to implement the correction operation V (f’), where
f’ is a Boolean function defined by the rule

fl(x)=fx)® flzdm). (11)

The function f’ depends on m, and thus it can only be deter-
mined after the teleportation of |¥(f)) has been performed.
To tie back to the case of a single-qubit diagonal gate G
discussed in Section II-B, where the conditional correction
was G' = GX G'X, we can note that V(f)" = V(f) and

rewrite

V() =V(HX"V(HT X",

where X denotes the n-qubit Pauli operator with Pauli-X in

positions where m; = 1 and identity operator I in positions
where m; = 0, such that X™|T) = |z @ m).

It now suffices to observe that for any f, the m-qubit
unitary V' (f) is in the n-th level of the logical Clifford
hierarchy [8], [47]; we provide a self-contained proof of this
in Appendix D of the full version [9]. This guarantees that
the correction V(f’) will be in the (n — 1)-th level. As
explained in Appendix D of the full version [9], the reason
this holds is related to the degree of the Boolean functions f
and f’, when they are expanded as a polynomial of their n
input bits. Specifically, we may observe that the highest-degree
monomials in the expansion of f(z) are the same as those in
the expansion of f(x @ m). Thus, when f'(z) is defined as
f(z)@ f(zdm), the highest-degree monomials all cancel out,
leaving only monomials of a lower degree. That is, the degree
of f’ is smaller than the degree of f by at least one. We use
this fact to prove in general that if a Boolean function A has
degree d, then V(h) € Cq4. In particular, since V(f) € C,, (the
maximum possible degree of any function is 1), we have that
V(f') € Cr1.

Our protocol proposes to implement the correction V (f”)
in the same fashion as V'(f): by preparing the resource state
|[W(f")) and teleporting as in circuit (10). This will also
produce a correction, associated with a Boolean function f” of
degree n—2. As we iterate, we descend the Clifford hierarchy,
and the degree of our correction function is reduced. Once
we have performed n rounds of teleportation, our correction
function has degree zero. If a Boolean function A is constant,
this implies that V (k) oc T; thus, once we have reduced the
correction function to degree zero, we may cease iterating the
protocol.

(12)

Later, in Section IV-E, we perform a more complete
analysis of the teleportation channel; for example, we quantify
the error in the teleportation channel when an imperfect
resource state is teleported instead of |¥(f)).

D. Preparing the encoded QRAM resource state

The analysis above shows how we can implement the
logical V(f) gate, provided that we can adaptively prepare
the resource states |¥(g)), up to low error, for any particular
Boolean function g. At first glance, this seems like a tall task.
There are 22" different states that we may need to prepare. By

a simple counting argument, the quantum circuit complexity of
at least one of these states is at least (2" /n). The innovation
of our protocol is to outsource this complexity to a single-
purpose, faulty (and ideally passive) QRAM device, which
may be able to exploit the unique structure of QRAM to
implement V' (g) cheaply, but imperfectly.

We propose a three-step procedure for preparing these
states, analogous to the preparation of the |T') state: physical
preparation, encoding, and distillation.

« Physical preparation: we assume that we have access to
a QRAM device that can implement an approximation to
V(g) at the physical level, as discussed in Section I and
Fig. 1. By running this device on the initial input state
|[+)®", we produce the physical resource state |¥(g)) of
Eq. (9). The device can be faulty. In fact, our protocol
can succeed even when the device produces states that
have low (asymptotically vanishing) 1/poly(n) minimum
fidelity with respect to |¥U(g)).

« Encoding: The physical n-qubit state is not protected by
a QEC code, and thus it is vulnerable to error. We imme-
diately encode it into (an approximation of) the logical
state |W(g)) using some number n’ > n of physical qubits
on our main quantum processor. This step incurs some
additional logical error because encoding arbitrary states
is not fully fault tolerant. However, for topological codes
like the surface code, there exist effective methods for
encoding a physical qubit into a logical qubit [50]. The
logical error due to encoding is O(p)—independent of
the code distance—where p is the physical error rate. In
Section IV-B, we use the general results of Ref. [61] to
formalize the error in this step. Since the state |¥(g)) is
an n-qubit state, we expect the total logical error incurred
from encoding to be O(np), although for the case of
general codes, we can only show O(n,/p). The physical
error rate must be p = O(1/n) or p = O(1/n?), so
that the total error from encoding remains O(1), but for
relevant sizes of n (e.g., n = 43 already corresponds to
one terabyte of QRAM), the p = O(1/n) condition is
already met on devices that exist today.

« Distillation: Distillation procedures [52], [53] for the
IT) (or |CCZ)) state leverage the existence of QEC
codes where T (or CCZ) is transversal. The overhead,
that is, the number of noisy copies of |T') needed to
distill one egis-good copy of |T) is polylog(1/eaist)s
and this can be improved to O(1) overhead using high-
rate codes [62]-[64]. For the V' (g) gate, we do not know
of any suitable codes that would enable this kind of
approach. However, we can still distill |¥(g)) using state-
agnostic quantum purity amplification methods [65]-[71],
which take many copies of an arbitrary mixed state
p and produce one £q4is¢-good copy of the pure state
|=XZ|, where |Z) is the principal component (i.e., top
eigenvector) of p. These methods do not leverage or learn
any properties of |Z), and it is known that the optimal
overhead achievable in such settings is ©(1/eqist) [70].

44

In Section IV-D, we discuss several specific state-agnostic
approaches. We first consider the iterated swap test pu-
rification method studied in Refs. [68], [69], [71], [72],
which is appealing for its simplicity. In the regime where
the physical preparation and encoding steps prepare states
with high (but still imperfect) fidelity, the iterated swap
test approach is nearly optimal. On the other hand, as
the fidelity of the undistilled input states decreases, the
overhead of the iterated swap test rapidly increases,
scaling exponentially in the inverse input fidelity. To
alleviate this issue, we propose a new gate-efficient state-
agnostic quantum purity amplification procedure based on
quantum principal component analysis [73], [74], which
achieves nearly optimal sample complexity even in the
regime of low input fidelity, while still being compatible
with the streaming model (i.e., where the undistilled input
states are processed one at a time, rather than all at once
as in the known sample-optimal protocol [70]).

To apply these state-agnostic distillation approaches
within our protocol, it must be the case that the state
that is output by the physical preparation and encoding
processes has the ideal resource state |WU(g)) as its
principal component. Evaluating this assertion requires
specifying a noise model in our abstract QRAM device
and in our main quantum processor. We suppose that
our main processor is subject to circuit-level stochastic
noise. For the QRAM device, the only assumption we
make is that the noise is independent of the dataset, in
the sense that, for dataset g, it enacts the n-qubit quantum
channel N3 o V(g) o N, where N o are g-independent
noise channels, and V(g) = V(g)[-]V(g)T is the ideal
QRAM channel. In this case, we can ensure that the
principal component of the state we prepare is |¥(g)) by
performing a partial Clifford-twirl of the unitary V(g).
This method leverages the fact that for any Clifford circuit
C formed from Z, X, CZ, and CX (i.e., CNOT) gates,
we have |U(g)) = C|¥(g¢c)) for some dataset gc; the
idea is to choose a random C, compute the dataset gc,
query gc with the QRAM device, and then apply C fault-
tolerantly to restore |¥(g)). Partial Clifford twirling is not
necessary under the stronger assumption that the noise
in the QRAM device naturally guarantees that the ideal
resource state is the principal component.

It is important that our protocol can work even when the
QRAM device has low (at least inverse polynomial) fidelity.
Given the engineering challenges associated with building a
reliable physical QRAM device, it is much easier to imagine
realizing our protocol in practice, especially as n grows, if the
physical QRAM device need only have a small correlation
with the correct output. Along these lines, another key benefit
of a distillation—teleportation approach to fault-tolerant QRAM
is that one always has the option to restart the preparation,
encoding, and distillation procedure if an error is detected.
For instance, if the physical QRAM device recognizes certain
errors (e.g., photon loss), one can simply postselect on these

events not occurring, improving the effective fidelity of the
device from the perspective of our protocol.

E. Full summary of protocol and statement of results

To summarize, our main result is a protocol for imple-
menting the logical QRAM operation V'(f), up to arbitrarily
high fidelity, using many queries to a device that can perform
the physical QRAM operation V(g) (for any/all g) with a
lower nonzero fidelity. As discussed in Section I, the physical
QRAM operation could be accomplished with a dedicated
subcomponent of the larger quantum device specialized for
QRAM, which need not be capable of universal fault-tolerant
quantum computation.

The protocol to implement V' (f) cycles at most n times
through five steps discussed in the previous subsections:
(1) physical preparation, (ii) encoding, (iii) distillation, (iv)
teleportation, and (v) adaptive classical computation of the
correction. Step (V) uses measurement outcomes from step (iv)
to transform the dataset according to the update rule (UR) of
Eq. (11), prior to returning to step (i). The entire protocol is
depicted in Fig. 2, where each of the five steps is shown in a
different color. A more detailed specification and formal error
analysis of each step is provided in Section IV. We arrive at
the following statement of the cost of implementing V' (f).

Theorem 1 (Main result (informal)): For any data table
f with 2" entries, and any error parameter ¢ > 0, the
protocol performs the logical QRAM operation V(f) up to
error € (in diamond distance), under the assumption that the
physical QRAM device implementing physical V (f) has noise
independent of f. The quantum resources required are:

e poly(n)/e calls to a device that performs the physical
V(g), for various g (determined adaptively) with any
nonzero minimum fidelity F' > 1/poly(n).

« poly(n)/e calls to a poly(n)-cost fault-tolerant encoding
procedure that encodes m-qubit physical states into a
suitable QEC code capable of FTQC, while incurring at
most O(1) logical error.

e poly(n)/e fault-tolerant one- and two-qubit logical gates,
single-qubit logical |0) state preparations, and single-
qubit logical measurements.

The classical resources required are:

« n applications of the classical update rule, each of which
has O(2") complexity in a standard RAM model.

e poly(n)/e twirling operations on the dataset, each of
which has complexity poly(n)2™ in a standard RAM
model.

After each update rule and twirling operation, the physical
QRAM device must be “reloaded” or otherwise given access
to the updated classical dataset.

The main implication of this result is the following:
suppose that a quantum algorithm calls the QRAM operation
V(f) at most T' = poly(n) times, and suppose that one has
access to a QRAM device that approximately performs the

45

physical QRAM operation with at least 1/poly(n) fidelity,
at computational cost poly(n) (similar to the cost of RAM).
Then, one may take 1/¢ = O(T') = poly(n), and conclude
that the algorithm can be implemented fault-tolerantly using
only poly(n) quantum resources. As a result, our protocol
provides a step toward justifying the cheap QRAM assump-
tion, and it provides a method of fault-tolerantly implementing
quantum algorithms that depend on QRAM.

Even in a cost model where noisy physical QRAM
incurs computational cost (2™)—for instance, if the physical
QRAM has 2(2™) active gates each requiring (1) energy
input—our protocol still provides the benefit that the expo-
nential quantum complexity is contained entirely to physical
quantum operations that can be optimized specifically to
perform QRAM. There is no need for an exponential amount
of QEC and the associated overheads it incurs.

1) Caveat: classical complexity: The main caveat of our
protocol is that it requires a non-negligible amount of purely
classical adaptive computation. In particular, after receiving
random measurement outcome m, the protocol requires re-
placing the value g(x) with the value g(x) ® g(x @ m) for all
2™ addresses z of the dataset, as in Eq. (11). While computing
the new value is easy for any individual x, the sheer number of
different = means the complexity—in terms of classical circuit
size or RAM calls to the dataset g—is at least Q(2™).

However, we must recall that naively, the logical QRAM
requires Q(2™) fault-tolerant quantum resources, if imple-
mented as a fault-tolerant circuit. One unit of fault-tolerant
quantum resources, such as one fault-tolerant quantum gate,
is expected to be several orders of magnitude more expensive
in terms of both financial cost and computational runtime than
one unit of classical computation, such as a classical gate or
floating point operation [75]. Thus, trading ©2(2"™) quantum for
Q(2™) classical resources may lead to an overall cheaper and
faster computation.

Furthermore, we expect that although it formally has
Q(2™) computational cost, the complexity of the classical
update rule has significantly better constant prefactors than
the classical computation required to power active QEC of an
entire QRAM circuit. As mentioned previously, circuit QRAM
with poly(n) latency would require a fault-tolerant quantum
computer with (2") logical qubits. Such a device would
likely require Q(2") full-fledged classical chips to be co-
located with the logical qubits, in order to process in parallel
the QEC syndrome data generated by the computation in real
time. For example, in the surface code operating at a 1 MHz
QEC cycle rate, the amount of syndrome data generated by 22°
logical qubits, each encoded into its own patch at code distance
11, would be more than 15 terabytes per second. Specialized
classical decoding algorithms must be run continuously to
identify and correct errors as they occur. In contrast, for a
dataset of size 22Y bits, the classical update rule in our protocol
is a single structured transformation of a 120 kilobyte dataset.
The only interaction between this dataset and the quantum

: round 1 : round 2 : : round n :
o n I I I I I Y |
o) —] T T T] V()

| — | — | | — |

I I I I I

I I I I I

: = : = : : = :

l = -~ l = < l l = -~ l

| .. g [g 1 [g |

I Do [| [I

| | | | |

B B) EE |

on
| = : UR H UR K : URH
I I I I

Fig. 2: Quantum circuit depiction of the protocol for implementing the logical diagonal QRAM operation

(f) (see Eq. (1))

fault tolerantly for a data table f. The protocol cycles through n rounds, and each round has five steps: preparation, encoding,
distillation, teleportation, and classical update, depicted in different colors. All gates are fault-tolerant, logical gates, except
the query to the noisy QRAM device ¥ and the encoding step F, outlined in red. The solid black wires represent encoded
logical quantum registers of n logical qubits, the red wires represent unencoded quantum registers of n physical qubits, and
the double black lines represent classical registers. For simplicity, we have not depicted the twirling step in the figure (which
may not be necessary in practice), where prior to each application of W, the dataset is modified by an independently chosen
random transformation, which is corrected for after £ has been applied; see circuit (48).

processor is the reloading of the physical QRAM device with
the updated dataset.

Additionally, because of the structure of the classical
update rule g(x) — g(z) ® g(x & m), it is conceivable that
dedicated classical chips could be built to parallelize the pro-
cess of performing the update and the reloading of the QRAM
device. In Section V, we analyze the complexity of the update
rule, and illustrate how it can be implemented with a classical
circuit of depth poly(n), although embedding this circuit into
2 or 3 spatial dimensions leads to asymptotically growing wire
density. We show how in a model of parallel computation, the
update rule is equivalent (up to poly(n) factors) to performing
sparse matrix-vector multiplication, with a particularly close
connection to the (fast) Walsh—-Hadamard transform. This fact
helps to understand the expected difficulty of parallelization
and it clarifies the opportunity cost of these classical resources.

2) Comments on scalability: An additional caveat is the
fact that our protocol is likely not to be fully scalable for
indefinitely large n. This stems from two aspects, the physical
QRAM device, and the encoding step.

First, the physical size of an (ideally passive) physical
QRAM device would need to grow as Q(2"), yet we need
it to produce physical QRAM resource states with at least
1/poly(n) fidelity. Thus, the fidelity of the individual device
components needs to improve as n grows. It is known that
certain architectural approaches to QRAM, namely, bucket
brigade QRAM, possess a certain noise resilience property:
the overall infidelity of the physical QRAM operation scales as
O(qn?) [37], where q is the error rate of the individual router
components that compose the device. This is exponentially
better than O(g2"), which would be the naive expectation,
given the exponential number of error-prone routers in the
device. This noise resilience is a crucial fact for the possibility

46

of practical QRAM. If this kind of scaling is achieved, then
the physical per-component error rate ¢ must decrease asymp-
totically roughly as O(1/n?) to be useful for our protocol.

Second, the physical QRAM resource state is an n-qubit
state, and in a noise model where each operation on our main
quantum processor fails with probability p, the encoding of this
n-qubit physical state into an n-qubit logical state necessarily
incurs at least £2(np) logical error. The formal analysis, later,
shows how O(n,/p) can be achieved regardless of the choice
of QEC code. Either way, p must decrease as O(1/n) or as
O(1/n?) to keep this error of total size O(1).

While any practical implementation of this protocol will
certainly need to pay close attention to error rates at every step,
this is not a hugely debilitating conceptual issue for QRAM.
This is because we do not ever expect to need to build a
QRAM device for very large values of n. For example, typical
RAM devices in classical computers are of size roughly 10
gigabytes, corresponding to only n = 36. The physical error
rate in state-of-the-art quantum devices in several different
platforms already achieves p in the range of 1073-1072,
Improving by roughly an order of magnitude to p = ¢ = 1074
would be sufficient to enable our protocol at size n = 36,
assuming that the dominant error contribution scales as 4qn?
(where the presumed constant prefactor of 4 is chosen to align
with Ref. [37, Eq. (28)]).

3) Comments on applications: Our investigation has
been primarily motivated by the goal of evaluating the vi-
ability of QRAM as a primitive for fault-tolerant quantum
computation in an abstract sense. Nonetheless, in Section VI,
we consider whether our protocol could provide a practical
advantage over alternative methods in several concrete applica-
tions. Generally, although our protocol achieves asymptotically
polynomial poly(n)/e complexity, we find that this version

of the protocol struggles to provide an immediate advantage.
For example, in quantum machine learning scenarios, the
Q(2™) cost of the classical update rule makes it difficult
to find examples where an end-to-end speedup persists over
alternative classical methods. The observation in Section V
that the update rule is similar in power to a sparse matrix-
vector multiplication clarifies that, in our search for super-
polynomial quantum speedups, we must only target problems
where the ability to perform classical 2 x 2" sparse matrix-
vector multiplications is not already sufficient to solve the
problem in poly(n) time, which considerably reduces the set
of candidates. See Section VI-B for comments on possible
scenarios where this conclusion may be avoided.

On the other hand, in scenarios like quantum chemistry
and cryptanalysis where QRAM is utilized—in that context
often referred to as a “quantum lookup table” or “quantum
read-only memory”—the 2(2") classical cost is tolerable. In
fact, in these instances, it is typically already being proposed to
implement QRAM with a fully error-corrected quantum circuit
of depth £2(2™) [76]. Our protocol could allow this exponential
fault-tolerant complexity to be offloaded to a specialized
physical QRAM device and a classical computer. However,
in our preliminary resource analysis at relevant system sizes
in Section VI, the poly(n)/e cost is still too large to provide
an actual advantage. Part of the issue is that if the QRAM
operation is called 7" times, one must take 1/e = Q(7'), and
hence the total cost of implementing all 7" QRAM queries
scales as T2. The discovery of a distillation protocol for
QRAM resource states with overhead polylog(1/e) instead
of 1/e would be extremely beneficial in this calculation.

4) Extension to multiple output bits: In Appendix A
of the full version [9], we explain how our protocol can
be straightforwardly extended to the case where b classical
bits are stored at each of 2" addresses, and one wishes to
coherently read all b bits into a separate bus register. That is,
we show how to fault-tolerantly perform the operation U (f)
that implements |T)|u) — [T)|u @ f(z)), with f: {0,1}" —
{0,1}" here denoting a function with b output bits. The
strategy is to observe that conjugating U(f) by a Hadamard
transform on the bus register yields a diagonal unitary with
41 on the diagonal that may be viewed as a generalization of
V(f) from Eq. (1). The unitary acts on n+b qubits rather than
n qubits, but importantly, the degree of the Boolean function
is at most n + 1, which can be much smaller than n + b. The
protocol proceeds identically to how it is described in the main
text, except that the resource states are larger, requiring n + b
qubits, which leads to greater gate complexity overhead when
performing distillation and teleportation.

F. Relation to prior work

The idea of QRAM was first formalized by Giovannetti,
Lloyd, and Maccone (GLM) in Refs. [7], [77] (although some
primitive versions of QRAM had been sketched earlier, see
e.g. Ref. [78, Chapter 6]). These works first introduced the idea
of a dedicated QRAM hardware element—a device specially
designed for QRAM and separate from the main quantum

47

processor—by proposing implementations based on optical
and atomic hardware. Many other proposals have followed,
including proposals based on superconducting circuits [79]-
[82], photonic systems [83], [84], and neutral atom arrays [85]
(see Ref. [8] for a more detailed review). We highlight
that notions of teleportation-based QRAM [83] and QRAM
resource states [85]—albeit resource states of size exponential
in n—have previously been proposed. Unfortunately, all of
these proposed QRAM implementations face daunting practi-
cal challenges, and most are not passive, meaning they require
active control over 2(2™) quantum components, which would
undermine the cheap QRAM assumption. (As Ref. [8] notes,
the proposal of Ref. [82] is a noteworthy example of a passive
implementation, although it faces challenges of scalability and
practicality.) To our knowledge, there has not yet been a
proposed implementation of a physical QRAM device that is
simultaneously practical, scalable, and passive.

The initial GLM QRAM papers also sparked a long-
running debate about the practicality of QRAM and validity
of the cheap QRAM assumption, especially in relation to error
correction and fault tolerance. In particular, GLM proposed a
specific QRAM architecture—the “bucket brigade” QRAM—
that they argued was intrinsically robust to errors. This claim
was initially met with some skepticism (see, e.g., Ref. [33]),
but the robustness was later proven in Ref. [37], which
showed that the overall error of a bucket-brigade QRAM query
scaled only with poly(n), despite the fact that the QRAM
itself is comprised of Q(2™) error-prone components. This
robustness is key to the viability of our own proposal, since
the passive QRAM device in Fig. 1a could indeed have only
moderate overall error rates compatible with our distillation—
teleportation scheme.

Even with some intrinsic robustness against errors,
QRAM is still likely to require QEC in most applications.
As mentioned in Section I, fault-tolerant implementations of
QRAM based on circuit decompositions of the unitary V (f)
involve Q(2") qubits and Q(+/2") non-Clifford gates, and
face serious questions of practicality at large-scales. To our
knowledge, the survey of QRAM in Ref. [§] was the first to
consider the possibility of achieving a fault-tolerant QRAM by
a method other than circuit QRAM. They proved several no-go
theorems that present barriers to finding a code where QRAM
is transversal. They also proved a no-go theorem ruling out
certain distillation—teleportation protocols. Specifically, they
considered protocols that have a distillation phase that queries
the physical QRAM gate V(f) up to @ times to prepare a
resource state x(f), followed by a teleportation channel where
X(f) interacts with an arbitrary state |@)@| in an attempt to
prepare V (f)|a)@|V (f). They showed that for this setup,
Q > Q(2%7) queries are required to succeed with high fidelity
on all possible choices of |a)(@|. Translating their logic into
our language, they observed that regardless of the protocol
and the function f, one can always find an f’ which differs
from f at only a few addresses, but where the resource states
x(f) and x(f) are O(/@Q/2")-close. This implies that if

Q) < 227, then the teleportation channel cannot produce well-
distinguishable outputs when f is queried compared to when
S’ is queried (data processing inequality). Yet, if we suppose
that f and f’ differ at even one address j while agreeing on
some other address k, then when |a@) = %(D)—HE)), the V(f)

and V(f’) gates should lead to distinguishable orthogonal
states, a contradiction.

Each of the n rounds within our protocol individually
fits into the framework of the no-go theorem of Ref. [8].
Our protocol circumvents this result because it adaptively
updates the QRAM function being queried in each round,
based on measurement outcomes obtained in prior rounds. If
two functions f and f’ are different, even at a single address,
there will be at least one round where the resource states
being teleported by our protocol are far away from each other;
in fact, if f and f’ differ at exactly one address in round
r = 1, then they will differ at exactly 2"~! addresses in
each round r = 2,3,4,...,n, provided that all of the n-bit
random measurement outcomes obtained up until round r form
a linearly independent set.

Certain elements of our protocol also connect with prior
work outside the context of QRAM. For example, the task
of quantum purity amplification has been extensively studied,
and we comment more on this in Section IV-D. Additionally,
while the n-qubit states |¥(f)) from Eq. (9) have—to the best
of our knowledge—not previously been proposed as QRAM
resource states,’ they have been utilized in other contexts,
often by the name of “phase states.” For example, phase states
have been studied as pseudorandom quantum states in the
context of cryptography [87], [88], as targets for quantum state
tomography [89], and as a mechanism for showing search-to-
decision reductions in quantum complexity theory [72].

III. ERROR MODELS AND PHYSICAL PROTOCOL
REQUIREMENTS

The theory of FTQC shows how a quantum processor can
perform an arbitrary quantum computation through a sequence
of noisy physical operations on a set of physical qubits,
provided that the physical noise is sufficiently uncorrelated and
its rate p is below a constant threshold [90]-[92]. Our protocol
augments this by assuming that we also have access to a
physical QRAM device that can perform an approximate V' (g)
gate on n physical qubits, for any function g, as illustrated in
Fig. 1b. We require that g can be modified from one query
to the next via classical communication with the device. Also,
we require that the quantum information contained in the n
physical qubits output by the device can be transported into
n physical qubits on the main quantum processor without
significant degradation of its fidelity, whether by physically

7After the public release of the first version of this paper, Ref. [86]
independently proposed using states | ¥ (f)) as resource states for data lookup
via teleportation. However, their motivation was quite different, focusing on
saving constant factors on the gate complexity of data lookup implementations
with poly(n) footprint and £2(2™) depth. In their context, it is not useful to
apply our recursive teleportation scheme, and their work involves only one
round of teleportation.

48

moving the qubits output by the device to the main processor,
or by some other means.

In this section, we specify the noise models we consider
for each of these two components, and we define the setup
for the FTQC part of our protocol on the main processor.
The protocol is agnostic to many of the details here, including
which QEC code is used, and we attempt to keep it as general
as possible.

A. Error model of the physical QRAM device

Without a more concrete implementation in mind, we
cannot fully model the noise in the device. However, we
consider a general noise model that assumes only that the
noise is independent of g, the function being queried. This
noise model was also employed for some of the results in
Ref. [8].

Definition 1 (Dataset-independent QRAM noise): A
physical QRAM device that implements channel V(g) on input
g is said to have dataset-independent noise if there exists N
and N> independent of g for which

V(9) = N20V(g) o Ny,
where V(g) = V(g)[]V (g)T is the ideal unitary channel.

13)

We defend the plausibility of this noise model by ap-
pealing to the presumed structure of shallow-depth physi-
cal QRAM implementations. One imagines that the bits of
classical memory corresponding to the values ¢(0), g(1)....,
g(2™ — 1) are distributed in memory cells over 1D or 2D
space—for example, the illustration in Fig. 1a distributes them
in 1D space. As discussed in Ref. [8], at a high level, a
poly(n)-depth QRAM implementation requires a routing step,
a readout step, and an unrouting step. In the routing step,
the n-qubit address information |x) is used to (coherently)
activate a path to the memory cell corresponding to address
z. In the readout step, a qubit must interact with the classical
bit of information g(z) stored in that cell, gaining a —1
phase if and only if g(x) = 1. Then, in the unrouting step,
the activated routers must be coherently reset before being
traced out to ensure the overall operation maintains coherence
between different |x).

The important fact to notice is that the routing and
unrouting steps are not at all dependent on the dataset g.
Thus, to justify the validity of Definition 1 in this model, any
noise that occurs during the routing step could be propagated
backward to the beginning of the circuit and contribute to N7,
while any noise in the unrouting step could be propagated
forward to the end of the circuit and contribute to N5.

The only step that can be dependent on g is the readout
step, but this step is generally considered to be simpler to
implement than the routing step [8]. For example, in the
bucket-brigade QRAM circuit of Ref. [37, Figure 10], the
readout step is performed in a single circuit layer by a set
of parallel single-qubit Pauli-X gates: at memory cell =z,
an X gate is applied if g(z) = 1, and an identity gate

I is applied if g(x) 0. (This classically controlled X
gate would ideally be applied passively via interaction with
a non-volatile memory storing g(z).) Since the identity I
and Pauli-X gates are simple, it may be plausible that, in
some implementations, the noise can be independent of which
of them is applied, justifying Definition 1 for the physical
QRAM device. Furthermore, we note that even if the noise
is not identical for the I and X gates, it is plausible that
the dataset-independent noise property effectively holds in the
context of our protocol, thanks to the protocol’s partial Clifford
twirling (Section IV-C) that effectively randomizes the data
being queried—intuitively this randomization should remove
dependence of g from the average noise channel.

We leave to future work the task of more rigorously
showing that certain microscopic (i.e., component-level) noise
models lead to dataset-independent noise in the form of Defini-
tion 1. However, we note that the set of noise processes that fall
into this category can include some counterintuitive members.
For example, we may suppose that a physical QRAM device
is constructed from a depth-n binary tree of routing elements,
but that one of the routers in the tree is “dead.” The QRAM
attempts to activate a path through the tree to a particular
address z at one of the leaves, and if this path passes through
the dead router, it causes catastrophic failure of the device,
leading the device to instead output the maximally mixed
state [/2". Let X C {0,1}"™ denote the set of addresses that
cause the dead router to activate when they are queried. Let
Ox =3, cx |2)x| be the projector onto these address states,
and let II;; = I — IIy. Then, we may write the channel
implemented by the noisy device as

- I
V(g)lpl = V(9)zpllzV (9)" + tr(Ilxp) o (14)
I
=Tz V(9)pV (9) Tl + tx(Ilxp) 5, (15)

where the second equality follows since V(g) is a diagonal
unitary, and thus it commutes with the diagonal projector II+.

We may then rewrite the noisy channel 17(g) in a dataset-
independent fashion as V(g) = N2 oV(g) o N7, with A7 =7
(the identity channel) and

I

Furthermore, in the context of our protocol, the device is
always queried on the input state p = |+)¥+|®". Thus, this
particular noise process has fidelity given by

tr (|2 (9) W () V(g) [1+)+*"])
_@—jxper-1-ja) 1, 2
That is, if the dead router is deep in the binary tree and |X| <
2", then the fidelity of the device remains close to 1.

+ a7

The fact that our protocol can work in such a scenario
is counterintuitive because the dead router would seem to
completely block access to the information g(x) for any z € X

49

and thus make it impossible to correctly implement the QRAM
when the address register has high overlap with the support of
IIx. As we will show in Section IV-C, our protocol handles
this with partial Clifford twirling, a technique that scrambles
the dataset g into a new dataset g¢ so that the information g(z)
is contained in g (y), and the location y is uniformly random,
and in particular, the probability that y € X is |X|/2™. Thus,
for every x, the dead router only compromises the information
g(z) with small probability, even for x € X.

B. Error model of the main quantum processor

Our main quantum processor acts on a set of noisy
physical qubits with a quantum circuit, that is, a sequence
of noisy physical quantum operations including initializations,
1- and 2-qubit gates, and measurements, as well as classical
computation and adaptive classical feedback. We will assume
that our main processor is subject to circuit-level stochastic
noise, defined below.

Definition 2 (Circuit-level stochastic noise, Section 2.5
of Ref. [61]): A physical implementation of a quantum circuit
V' is said to be subject to parameter-p stochastic noise if the
following holds.

o Purely classical components are implemented perfectly
without any errors.

e Each quantum component P, including (classically
controlled-)gates, qubit initializations, measurements, is
realized by P = (1—p)P+pNp, where Np is a quantum
channel of the same input and output registers as P.

Circuit-level stochastic noise is a special case of the more
standard model called local-stochastic noise model [92], which
additionally allows some correlations between the gate faults.
We choose circuit-level stochastic noise over local stochastic
noise because this allow us to analyze a fault-tolerant logical
state preparation procedure using the results of Ref. [61], for
which the theorems require independent noise. However, we
will require that the QEC code and FTQC scheme are able to
correct against the more general local stochastic noise.

C. Fault-tolerant quantum computation

Our protocol is agnostic to which QEC code family and
FTQC scheme is utilized, as long as it is capable of a universal
set of fault-tolerant logical gates. Specifically, there must be a
nonzero threshold py such that, if the processor is subject to
local stochastic noise with error parameter p < pg, then for
any target error rate and any logical quantum circuit, one can
choose the code parameters (e.g., distance) large enough to
ensure the ideal logical circuit is simulated up to the required
error [90], [92]-[96].

As we wish to enact the logical n-qubit QRAM operation
of Eq. (1), we assume we have chosen some QEC code family
that encodes n logical qubits into some number n’ > n of
physical qubits, along with a scheme for performing fault-
tolerant gates. Regardless of our choice, we can identify the
following ingredients.

« Encoding: There is an encoding isometry F, which maps
any n-qubit physical state |¢)) to its associated encoded
n-qubit logical state [¢)) (of n’ physical qubits). The
map F is injective and its image is the codespace of the
code. We let £ denote the corresponding quantum channel
E[]E" that encodes density matrices. Our protocol will
also require a fault-tolerant encoding gadget x, which
implements £ in the absence of noise, but is constructed
in such a way that its noisy implementation Epp is
resilient to errors (see Section IV-B).

o QEC: There is a QEC projector Q that maps states outside
of the codespace to states in the codespace, that is, a map
that detects and corrects physical errors on encoded states.
In FTQC, the projector Q is implemented with a fault-
tolerant QEC gadget, denoted Qpr, which enacts the map
Q in the absence of noise and a map @FT in the presence
of noise. The gadget Qp is applied after each location in
the logical circuit to prevent the buildup and propagation
of physical errors; it must satisfy certain formal properties
to guarantee the existence of a threshold; see Ref. [93].

« Gates: For each physical gate G, we let G denote the
associated logical operation on the codespace of the QEC
code, and we let G = G[-]JG' denote the associated map.
We let Gpr denote a fault-tolerant gate gadget for G.
In the absence of noise, the gadget Grr implements
G when acting on states in the codespace, and in_the
presence of noise, it implements a map denoted Gpr,
while obeying certain properties related to propagation
of physical errors [93]. A scheme for universal FTQC
requires the specification of a fault-tolerant gate gadget
for a universal set of gates.

We now expand more on the formal properties that FTQC
guarantees about these maps. First of all, each subset S C [n/]
of physical qubits is either a correctable or an uncorrectable
subset, depending on whether there exists an error channel
(Zse ® Wg) acting trivially on S¢ and nontrivially only on
qubits within S that can induce a logical error, in the sense
that @ # Qo (Zse ® Ws) o Q. The assumption that the
FTQC scheme has a threshold p, against local stochastic noise
indicates that whenever p < po,

Yoo a-pm s <),

S uncorrectable

(18)

where T'(£) a quantity that depends on p but has the property
that, for fixed p, I'(§) can be exponentially driven to zero
simply by choosing a larger QEC code (indicated by the
encoding map &) from the code family, incurring at most a
polylogarithmic overhead (which is defined as the factor by
which the number of physical qubits and physical gates must
increase).

Furthermore, abstracting away from physical errors, we
can similarly quantify the logical error incurred by performing
a fault-tolerant gate as

%HGO Qo Qpr — Qo Qpro gFT o @FTH<> <T(), (19

50

where again I'(€) is used to denote a quantity that vanishes
with increasing code size—the overhead of achieving logical
error I'(£) < 4 is at worst polylog(1/d). The equation above
states that performing the noisy gate Grpr sandwiched between
noisy rounds of QEC and then projecting onto the codespace is
nearly equivalent to simply performing noisy QEC, projecting
onto the codespace, and applying the perfect logical gate.

IV. DISTILLATION-TELEPORTATION PROTOCOL: DETAILS
AND ERROR ANALYSIS

In this section, we examine each step of our protocol in
more detail, propagating errors and proving formal statements
about the performance of each step. Whereas in previous
sections we labeled inputs and outputs of quantum circuits
with kets, here we label them with density matrices, since we
will be investigating the impact of noise, which may lead states
to lose their purity. It should be understood that the unitary
circuit elements are applying the associated unitary channel
on the density matrices on which they act.

A. Noisy physical resource state preparation with QRAM
device

As discussed, we assume we have access to a noisy
physical QRAM device that attempts to perform the QRAM
operation of Eq. (1) on the state |+)®" at the physical level,
in order to produce the resource state |¥(g)) of Eq. (9), given
as input the dataset g. We depict this relation pictorially via
the following circuit, where the red wire indicates that the
outgoing quantum register is unencoded and the qubits are

physical qubits.
| (g)X ¥ (g)]
g

However, it is unrealistic to assume that the QRAM device
can be implemented perfectly at the physical level. Rather,
the state it produces is a state 17)(g) that has some nonzero
fidelity with |U(g))}W¥(g)|- We assume that the noise in the
device is independent of the dataset, as in Definition 1, so
that the QRAM channel decomposes as N2 oV (g) o N;. Then,
we have

(20)

Blg) = Ne[Vg) M [[HX+* [V ()] @

In the circuit notation, we indicate the existence of noise by
outlining the gate and its output in red.

()

g

(22)

We characterize the noise strength by the infidelity 1 —
F(g)phys, Where F(g)pnys is the fidelity of the state 1(g)
with respect to the ideal state |W(g)}¥(g)|, given by

F(g)phys = (¥(9)[4(9) ¥ (9)) - (23)

B. Encoding physical resource states into logical resource
states

The noisy resource state 17;(g) on n physical qubits is un-
protected from errors, and once prepared it must immediately
be encoded into a QEC code. Ideally, this encoding process
would prepare the state £[¢)(g)], which is in the codespace of
the code, as in the figure below, where the black wire with
a black slash-n indicates that the register contains n logical
qubits encoded into some number n’ > n of physical qubits.

- Eld(g)]

However, the encoding process may not be fault tolerant, that
is, it may introduce additional errors into the logical output
state that are proportional to the physical error rate p of the
hardware and the number of gates in the encoding circuit
that implements &; this logical error cannot be suppressed
simply by growing the code size. Hence, we need an encoding
procedure Epr that is fault-tolerant against the physical noise
model, in the sense specified in Proposition 2 below. When
we attempt to realize SFT on faulty hardware, we instead
implement a channel Epp. After applying Epr, we apply
the (noisy) fault-tolerant QEC gadget—implementing the map
Op1—on the now-encoded state to correct for physical errors
that occurred during Epr. The output state is Opro&pr [zﬁ(g)}
(we could alternatively think of Opr as part of Epr and omit
it from the expression®). This state is still not necessarily in the
codespace, but the action of the noisy-but-fault-tolerant QFT
brings it close to the codespace, in the robust sense required
by formal proofs of fault tolerance, for example, in Ref. [93].
The closest codespace state is obtained by applying the QEC
projector Q, resulting in

&(g) = Qo Qpr o Err[dh(g)].

Of course, we cannot apply noiseless Q on actual hardware,
but the probability of logical deviation from @(g) can be
suppressed to an arbitrarily small quantity simply by grow-
ing the code size (incurring only logarithmic overheads or
even constant overhead if one uses constant-rate codes [92])
provided that the physical error rate is below the threshold.
Since the rest of our protocol is performed using fault-tolerant
logical gates, we identify ¢(g) as the logical output of the
noisy encoding, denoted pictorially by outlining the encoding

gate in red.
¥(9) o(9)

We define the encoding error as the maximum (over
arbitrary n-qubit input p) trace distance between the state £|p]
obtained from perfect encoding and the state Qo Oppo&pr 0]
obtained from noisy encoding, as follows.

Definition 3 (Encoding error): Consider a QEC code
encoding n logical qubits, specified by an encoding isometry

¥(9) (24)

(25)

(26)

8Howexer, note that physical errors in Epr can combine with physical
errors in Qp that create a logical difference between Qo Qpro& rr(¥(g)]
and Q o Epr[ih(g)]-

51

E. Let Q denote a QEC projector for the code &, and let
Qpr denote the noisy implementation of a fault-tolerant QEC
gadget for Q. Given a fault-tolerant encoding procedure Epr
and its noisy implementation Epr, the encoding error is
defined by the following expression

27

Eenc

=&l

where the supremum is taken over all n-qubit physical states
p. Note that ., is expected to have a dependence on n, as
well as the physical error rate p of the hardware.

1 - .
= sup §HQ° Qrr o Err[p)]
p

The goal of the encoding step is to take a phys-
ical state ¢(g) with some nonzero fidelity F(g)phys =
(T(g)|¥(9)|¥(g)), and map it to an encoded state ¢(g) with
a smaller but still nonzero fidelity

F(g)enc = <W|@‘W> .

Using the definition of the encoding error, we can make
an additive bound F(g)enc > F(¢g)phys — Eenc, Which is
sufficient when F(g)pnys is large enough that the right-hand
side is greater than zero. However, if F'(g)pnys is smaller
than €qpc, then this bound is no longer meaningful. We can
instead show a multiplicative bound roughly of the form
F(g)enc > (1 —O(€enc))F (g)phys. Which is more powerful in
the small-fidelity regime. To show this, we have to manually
perform a Pauli twirl of the encoding operation, which allows
us to guarantee that the twirled encoding channel is stochastic
(i.e., it acts as identity with some probability 1 — O(genc) and
as some other CPTP channel otherwise); see, for example,
Ref. [97, Lemma 5.2.4] and Ref. [98, Lemma 3]. Without
Pauli twirling, small encoding error alone is not sufficient to
rule out the possibility that the encoding channel has coherent
error, such as small unitary rotations, which can degrade the
fidelity in an additive rather than multiplicative way.

(28)

The Pauli twirl involves applying a randomly chosen
physical Pauli operator, encoding, and then applying the same
Pauli operator but on the logical level. The set of physical
Pauli operators can cause the fidelity to degrade by a factor
(1 —p)™ (which is on the order of 1 — O(eeyc) anyway). We
capture this in the following proposition, which states that if
we already have an encoding method £f.- with small encoding
error, we can construct a Epr that degrades the fidelity in this
multiplicative way. The formal proof is provided in Appendix
B of the full version [9].

Proposition 1 (Pauli twirling the encoding channel):
Denote the fidelity of the physical state by F(g)phys =
(¥(g)|¥(g9)|¥(g)). Suppose the processor is subject to circuit-
level stochastic noise with strength p (Definition 2), and et Ef.p
be a fault-tolerant encoding channel with encoding error €ep
(as in Definition 3). Then, there exists another fault-tolerant
encoding channel Epr (formed by Pauli-twirling &), for

which

(29)
where ¢(g) is defined from Epr as in Eq. (25), and I'(€) is a
quantity that vanishes with increasing code size, provided the
physical error rate p is below a constant threshold, as discussed
in Section III-C.

Next, we explain how to achieve an encoding with
manageable eqn.. It should be noted that for fixed p, it is
unavoidable for .y, to grow at least linearly with the number
of logical qubits n, simply because we start with an unencoded
state [1)) on n faulty physical qubits. Remarkably, it is possible
to construct a fault-tolerant encoding procedure g such that
in the presence of noise, the logical encoding error eep. has
no direct dependence on the block size and the distance of
the code £ that we are encoding into. Such fault-tolerant
encoding procedures exist for specific families of quantum
codes such as the surface code [50]. Here, to keep our main
results as agnostic to the underlying quantum code & as
possible, we opt to use a fault-tolerant encoding procedure that
works for any quantum code [61]. This procedure is based
on concatenated-code quantum fault tolerance [90], and its
fault tolerance for quantum input—quantum output tasks was
recently proven under the circuit-level stochastic noise model
defined in Definition 2.

The circuit-level stochastic noise model in Definition 2 is
a special case of a more general model called local-stochastic
noise model [92], which additionally allows for some corre-
lations between gate faults. For our purposes, Proposition 2
below will be using a result of Ref. [61] that is proven
under this circuit-level stochastic noise model. However, as is
often the case in fault tolerance analysis, we expect the same
statement extends to the local-stochastic noise model. Since
implementing this extension is beyond the scope of our work,
we keep the discussion simple by working with Definition 2
here.

Proposition 2 (Error in fault-tolerant encoding channel
for general codes): Consider a family of quantum error-
correcting codes encoding n logical qubits into a codespace,
and suppose that this family has a threshold py with respect
to local stochastic noise (implying Eq. (18)). Correspondingly,
for a particular instance of the family (labeled by its encoding
map &), let Q be the ideal QEC projector, Qpr be the fault-
tolerant QEC gadget, and I'(€) be the logical error suppression
function (see Section III-C). Then, there exists a fault-tolerant
encoding procedure Epr of size |E| - poly(k), such that, when
implemented under the circuit-level stochastic noise model
(Definition 2), the encoding error as defined in Definition 3
satisfies

1 .

€enc = SUP §”Q o Qpr o Errlp] — Elplllh (30)
P

< T(E) + 2y/epn + 2[€|(ep)*, 31)

52

where C' is an absolute constant and & can take values from
a sequence of geometrically increasing integers, provided that
the physical error rate p is below some constant threshold.

The formal proof is provided in Appendix B of the full
version [9]. We remark that the final term in the expression
above is similar to the I'(£) term, in the sense that that for
any ¢, one can choose k = polylog(n/d) and ensure that it
is smaller than §. Thus, the overhead is only polylogarithmic
and we neglect its contribution in our analysis elsewhere in
the protocol. These two propositions together allow us to show
that the encoded state maintains substantial fidelity with the
ideal resource state, for use in our protocol.

Corollary 1: Suppose the quantum processor is subject
to circuit-level stochastic noise with error rate p (defined in
Definition 2). Let

Fain = (1= np = 6n/2p) min(¥(9)|(9) ¥ (s)).

Then, there exists a fault-tolerant encoding procedure &g,
such that for all g we have

(32

(¥(9)(9)[¥(9)) = Frin,

where ¢(g) is defined from Epr as in Eq. (25). Moreover, the
qubit and gate overhead of applying Epr is poly(n).

Proof: This follows by defining & to be the
encoding procedure shown to exist in Proposition 2, and then
applying Proposition 1 to form Epr. Note that (1 — p)™ >
1 —np+ 6§ for § = O(n?p?). When the value of k is taken
to be polylog(n/d), and the QEC code size is taken to be
npolylog(n/J), then the error terms T'(€) and 2|€|(ep)* can
be made O(0), and the stated fidelity Fi,i, can be guaranteed.

]

(33)

C. Fartial Clifford twirling

The preparation and encoding processes produce a state
¢(g), but the distillation process discussed later can only

distill |¥(g)X¥(g)| from many copies of ¢(g) if the principal

eigenvector of ¢(g) is |¥(g)), which we cannot guarantee in
general from the noise model we have assumed.

One solution to this challenge is to use twirling [99], also
known as randomized compiling. This technique can convert
general noise into better-behaved noise by inserting random
gates from a certain set into a quantum circuit, and compen-
sating for their effect by modifying other gates in the circuit.
We already saw an example of this process in the encoding
step (Proposition 1), where the insertion of Pauli gates led the
noise to become stochastic. It is well known that twirling by
random Clifford gates can lead to stronger results, converting
arbitrary (gate-independent) noise into depolarizing noise. For
example, Ref. [100] showed how randomized compiling, when
actively applied within the physical QRAM device, can help
mitigate the impacts of coherent errors on fidelity. However, in
our setting—where we ideally consider a fully passive QRAM
device and thus can only apply twirling “outside” the device—
we cannot use the full Clifford group since, for example, if we

conjugate the QRAM unitary V (g) by the H gate, we do not
obtain another QRAM unitary. Our twirling set will instead
be the subset of the n-qubit Clifford gates generated by Z, X,
CZ and CX (CNOT) gates, which do map QRAM unitaries
to QRAM unitaries.

1) Setup and important lemmas: In what follows, we
make use of the properties of {0,1}" as an n-dimensional
vector space over the field Fs.

Definition 4 (Partial Clifford twirling set): Suppose we
are given A, B, u, and v, where

e A is an n X n invertible matrix over Fy,

e B is an upper triangular n X n matrix (with zeros on the
diagonal) with entries in Fy ,

o u € Fy,
-UGIFS.

Define M4 to be the quantum gate that enacts My : |x) —
|Az) for all x € F%, which can be composed from O(n?)
CX gates via Gaussian elimination, and define the diagonal
unitary

Qs= [] czi,

1<i<j<n

(34)

where CZZ is the identity gate when k£ = 0 and the CZ gate
between qubits ¢ and j when k& = 1. Then, define the n-qubit
quantum gate that corresponds to (A, B,u,v) as

C=2'QpM} X", (35)

That is, C' is a product of O(n) single-qubit Pauli-Z gates
determined by the entries of v, O(n?) CZ gates determined
by the entries of B, O(n) Pauli-X gates determined by the
entries of X, and O(n?) CX gates determined by the entries
of A (via My).

Let the twirling set T consist of all gates C' constructed
in this fashion from some choice of A, B, u,v. When we say
to generate a random gate from T, we mean to generate a uni-
formly random A, B, u, and v and choose the corresponding
CeT.

We call this partial Clifford twirling because the set T is a
subset of the n-qubit Clifford group. In particular, the set T is
generated by X, Z, CX, CZ, and the Clifford group is obtained
by adding the Hadamard H and phase gate .S to the generating
set.

Proposition 3: Let g : F§ — Ty be a data table (Boolean
function) and let C' € T be a twirling gate corresponding
to choice (A, B,u,v). Let M4 and Qp be defined as in
Definition 4. Then, we have

[¥(9)) = V(g)|[)" = CV(go)|+)*" = C[¥(gc)) (36)
where for any z € F3

go(z) = g(Az &) & [z - v] & [¢ Bx] (37)

Proof: We note that X“M|+)®" = |+)®" since
X" and M4 are made from X and CX gates. The gates

53

X" and M4 simply permute the computational basis states,
viewed as vectors in FJ, by an affine transformation, and
we can further note that MLX“V(g)X“]MA = V(g') where
9'(x) = g(Az @ u). Finally, the operation Z@Qp is diagonal,
and equal to V(h) where h(z) = [z -v] @ [z Bz]. We have
the composition rule V(h)V(g') = V(¢' ® h) = V(gc). The
statement follows from these facts as

CV(g)|+)&" = Z2°QpMi X"V (g)|+)®" (38)
= Z°QpMi X"V (g) X" Ma|+)%" (39
=2'QV(¢)|+)*" (40)
=V(h)V(g)|+)*" (A1)
=V(ge)|+)®" (42)

|]

Next, we will examine how random choice of C' € T
spreads Pauli operators. We will examine the set of signed
Pauli operators, and specific subsets of it.

Definition 5 (Signed Pauli set and noteworthy subsets):
Define P to be the set of 22" 1! signed Pauli strings written in
the canonical form i%?(—1)°X"Z®, where s € Fy, a,b € F}.
The factor of i ensures that each operator in P is Hermitian.
We partition P into several nonoverlapping subsets

Py = {i**(-1)°X"Z* € P:a=b=0",s =0} = {I}

(43)

P = {i""(-1)°X’Z* €P:a=b=0"s=1} = {1}
(44)

Pz ={i""(-1)*X"Z € P:a #0",b=0"} 45)
Peven = {i"%(~1)°X*Z% € P:b# 0", a-b=0} (46)
Poaa = {i**(-1)°X"Z" €P:a - b=1} (47)

We argue that the Pauli operators are spread uniformly
over the subset of PP to which it belongs. The full proof of the
following proposition is provided in Appendix C.1 of the full
version [9].

Proposition 4 (Twirling spreads Paulis uniformly): Let
C ~ T denote choosing C' randomly from T as described in
Definition 4. Given a fixed P € P, forany C € T, CPCT € P
since C is Clifford. Furthermore, let) € P be a random
variable formed by choosing C' ~ T and defining Q = CPC*.
Then, the distribution over () is the uniform distribution over
the subset of P (i.e., Py, Py, Pz, Peyen, o Pyaq) to which P
belongs.

Proof idea: Consider a Pauli P € P written
in canonical form as P = i*%(—1)°X®Z®, and a Clifford
C = Z“QBMLX“ € T. We explicitly compute the Pauli
CPCT = i%"(=1)¥ X" Z% and give formulas for s',a’, b’
in terms of s,a,b,v, B, A,u. Then, we use these formulas
to verify that for t € {0,1,Z,0dd,even} if P € P, and
v, B, A, u are chosen uniformly at random, then s’,a’,’ are
uniformly random over all values consistent with the definition
of IP;. |

2) Modification to circuit: We now explain precisely
how our protocol changes when we implement partial Clifford
twirling. We want to implement V (g). Each time we query the
physical QRAM device, we generate a C uniformly at random
from the Clifford subset T, as defined in Definition 4. We
update the function g to be go using Eq. (37). In particular,
the value at each address « may need to be updated, but each
one can be computed with a simple poly(n)-time classical
computation and a single query to learn g(y) for a particular
y. We use the QRAM device to produce the noisy physical
resource state @(gc), and then we encode that resource state,
yielding ¢(g¢), as in Eq. (25). Only then do we fault tolerantly
apply the gate C, which consists of O(n?) logical Clifford
gates. This full procedure is depicted in the following circuit.

(48)

Each time the QRAM device is called, an independent random
C is chosen. Thus, the output state may be modeled as the
mixture

Mtwirl = C@Té ¢(gC)6T .

(49)

We have not included the twirling step in the main circuit
of Figure 2; partly because it would clutter the figure, and
partly because we feel that the twirling step may not be
necessary in practice if the QRAM device can be constructed

in such a way that ¢(g) already has |¥(g)) as its principal
eigenvector.

3) Twirling ensures the principal eigenvector is correct:
Now, we are ready to present the main finding of this section.
The full proof is provided in Appendix C.2 of the full version
[91.

Proposition 5 (Correct top eigenvector): Suppose that
for every g, the state ¢(g) defined in Eq. (25) satisfies
(U(9)|9(9)|¥(g)) > Fin, and suppose that the faulty QRAM
device is subject to dataset-independent noise (Definition 1).
Let C ~ T denote drawing C randomly from the twirling
set as described in Definition 4, and let E denote expectation
value. For each g, let ¢(g)wir be defined as in Eq. (49). Then

&(9)swir1 satisfies the eigenvalue equation

¢(g)twirl|\ll(g)> = /\twirl|\11(g)> s

with Atwir] = Fmin. Furthermore, all other eigenvalues of

&(9)swir1 are no larger than 2—ntl

(50)

Proof idea: Due to the dataset-independent assump-
tion, the noise in the physical QRAM device and the encoding
step can be consolidated into a noise matrix xp ps (Where
P, P’ € P) for which it is always possible to write

#lgc) = > xprPl¥(ge) ¥ (g0)[P.
P.P'cP

61Y)

54

Noting |¥(gc)) = CT|¥(g)) (Proposition 3), we can then say

¢(g)twirl = Z XP,P’ CIETUP€T|\I;(Q)><\I,(9)|€?/€J()

P,P'cP

(52)

We now use the fact that randomly choosing C' leads C PC'
to uniformly cover a large subset of of P (Proposition 4). The
offdiagonal terms with P # 4P’ vanish due to the uniformly
random sign. This conclusion did not require the full size of
T; it is a consequence of the fact that T contains the Pauli
group, and Pauli-twirling leads the effective channel to become
a Pauli channel. If T were the entire Clifford group, then
CPCt would be a uniformly random Pauli, and we would
immediately be able to use the 1-design property of the Pauli
set to say that, for any ¢ and for any case where P # =4I,
the quantity Ec..r C P CT|U(g)X¥(g)|C P C' is equal to the
maximally mixed state. This would then immediately imply
the statement we seek, and also that all other eigenvalues
Aother SatSify Aother < 27™. Generally, this would be a
manifestation of the fact that Clifford twirling transforms any
noise channel into a depolarizing channel. However, as T is not
the full Clifford group, we have to do more work; some subsets
of P may be underweighted or overweighted. Nevertheless,
we show that there is enough uniformity to recover a similar
result, albeit with the bound on A¢her suffering a factor-of-2
overhead. |

D. Distillation of logical resource states

The encoding step, combined with twirling, produces
the logical encoded states ¢(g)twir1, Which are guaranteed to
have |¥(g)) as their principal eigenvector (Proposition 5). The
remaining steps of the protocol act directly on the encoded
states (using fault-tolerant gadgets for a universal set of
gates): all physical errors created during the distillation and
teleportation portions of the protocol can be prevented from
turning into logical errors by growing the code distance. Thus,
we describe the distillation and teleportation protocol by their
logical quantum circuits, and in the description of our protocol,
we keep the overline notation to remind the reader that these
operations are meant to be performed fault tolerantly on the
encoded Hilbert space.

However, the distillation ideas presented here apply gen-
erally, regardless of whether/how the states and operations are
encoded with QEC. Later in the section, including some of
the proposition statements, we drop the overlines, since the
statements could be of independent interest.

The procedures we consider for distilling the logical
QRAM resource state are state agnostic. Namely, given many
copies of an arbitrary state p;,, the distillation protocol pre-
pares (up to small trace distance error) the pure state |ZXZ],
where |Z) is the principal eigenvector of pi,. In other words,
our distillation procedure is equivalent to the task of quantum
purity amplification [70].

Pictorially, the distillation step accomplishes the follow-
ing operation within our protocol. For simplicity, the circuit

below depicts all copies being prepared at the beginning and
processed at once; in practice, it is possible to prepare the
states in a streaming fashion with less space requirement, as
we discuss later.

¢(g)twirl 7L_

@twirl 7'L 9

G wint +— B A A G)aist ~ [T())T(g)] (53)
>

@twirl 7L_

Now we present the main result of this section, as applied
to our protocol, utilizing the general techniques discussed later
in the section.

Proposition 6: Suppose that the QRAM device is subject
to dataset-independent noise, as in Definition 1, and that for

every g, the states ¢(g) produced on input g (see Eq. (25))
satisfy (U(g)|0(9)[¥(g)) > Fuin» With Fpy > 27772
Then, for any error parameter c4ist, by applying a carefully
crafted sequence of subsequent (fractional) swap operations on

O(155= (= + £1-)) copies of ¢(g)win (from Eq. (49))

Edist

we can distill a state ¢(g)aist that satisfies

SIT@HTG) — Fharals < e

The protocol requires O(1) single-qubit gates and O(n) con-
trolled swap operations, per copy consumed.

(54)

Proof: This is based on Proposition 5, which shows
that @twm has the correct top eigenvector, combined with
some state-agnostic quantum purity amplification protocol to
distill the top eigenvector. When Fi,;, is close to 1 the
iterated swap test achieves this with a close-to-optimal ~
(1 — Finin)/€aist number of copies of ¢(g)twir1 and the same
order of swap tests, that is, circuit (56)—see Proposition 7
and Lemma 1. However, for smaller values of Fi.,, the
iterated swap test incurs an exp(©(1/Fyn)) overhead, see
the discussion at the end of Section IV-DI1.

In the general case, we can exploit the fact that the
second largest eigenvalue of ¢(g)wir1 is upper bounded by
o—ntl < F /2 due to Proposition 5, and use a protocol
based on quantum principal component analysis (Proposi-
tion 10), achieving the stated copy complexity utilizing a

matching number of swap-test-like gadgets from Fig. 4.

Both Proposition 10 and Proposition 7 are described as
producing a state for which the largest eigenvalue is close to
1. We can turn this into a trace distance bound via Lemma 1.
The stated gate complexity follows from the observation that
Fig. 4 has 3 controlled swap operations (targetting (n + 1)-
qubit registers) and 4 single-qubit gates.]

To convert to trace distance as in Eq. (54), our analysis
uses the fact that a mixed state is as close to its principal

55

eigenvector as its principal eigenvalue is to 1, captured in the
following lemma.

Lemma 1: A quantum state poy¢, Whose principal eigen-
vector is |Z) with eigenvalue 1 — 7, satisfies

1 _\ /=
5 IPout = [EXElll = 7. (55)

Proof: Let A1, ..., \q be the eigenvalues of the state
Dout, With Ay = 1 — 7 the principal eigenvector. They satisfy
Z;l=1 Aj =1, so Z?:z A; = 1. The operator pou — |=Z)E]
has the same eigenvectors as pout, and the eigenvalues are
—1, A2, ..., Aqg. The sum of the singular values is thus equal
to 27, which completes the proof.]

1) Distillation with the iterated swap test: In this sub-
section, we drop the overlines in our notation, and speak
generally about the task of quantum purity amplification.
We first consider the iterated swap test, a quantum purity
amplification procedure studied in detail in Ref. [69] (a similar
procedure was discussed in Ref. [72]), although there the
analysis assumed that the input states pi, are a mixture of
a rank-1 pure state and the maximally mixed state, that is, of
the form pae, = (1 — 0)|EXE| + 31, with d the Hilbert space
dimension and I/d the maximally mixed state. We do not make
this assumption here. See also Ref. [71] for an analysis of the
iterated swap test without this assumption.

The basic ingredient of this distillation procedure is the
swap test (which in our application would be performed fault
tolerantly using fault-tolerant gadgets for controlled swap,
Hadamard, and measurement).

|0X0]
Pin Pout (56)
Pin
trace

We say that the swap test passes if the first qubit is measured
in |0) at the end of the circuit. Acting on two copies of the
trace-1 state p;,, the probability of the swap test passing is
given by
1+ Tr(pf)
2)
and the state one obtains conditioned on the swap test passing
is

Pr[swap test passes] = (57)

Pin + PE
out = —————2—, 58
P T T (2 o
If the principal eigenvalue of p;y is 1 —n;,, then we can bound
1 1-— in 2
Pr[swap test passes] > % >1 =1, (59)

It is easy to verify that po,t and p;, commute, and they also
have the same eigensubspaces since [0,1] > x — x + 22 is
strictly monotone. Moreover, denoting the principal eigenvalue

of pout by 1 — Nout, We have

-1 (1 —min) + (1 — 77in)2
Nout = 1 — 2
1 +Tr(pin)
1— (1= 1in) + (L = nin)?
- T4 (1 —min)? + 73,
_ nﬂ 14+ Min

).

The idea of the distillation protocol studied in Refs. [69],
[71], [72] is to iterate the swap test by feeding two copies of
Pout that both passed the swap test back into the swap test as
pin, and repeating. Each time we successfully pass the swap
test, the output state has higher purity and also the probability
that the swap test passes at the next level is closer to 1. By
continuing this process for sufficiently many iterations and
consuming sufficiently many copies of p;,, we can produce a
state with purity arbitrarily close to 1.

2 (1 — in + 2 (60)

which is about 7, /2 for i, < 1.

For small 7;, (i.e., the regime of high input fidelity), the
number of copies needed scales as O(7),/€qist). Circuit (53)
depicts creating all copies of the input state at the beginning
of the protocol. For the swap test approach, if swap tests
on disjoint pairs can be performed in parallel, the overall
depth of the protocol could be O(log(nin/€aqist)). However,
as described in Ref. [69], the swap test approach can also be
implemented in a streaming fashion, allowing one to reduce
the space requirements to O(log(nin/cqist)) at the expense
of requiring O(nin/caiss) depth. We now give the formal
statement of performance and costs for this type of distillation
when 7y, < 1/4, for general input states.

Proposition 7: Consider a qudit in a mixed state piy
with its principal eigenvector |Z) having eigenvalue 1 — 7.
After k successful iterations of the swap test procedure we
obtain a state pj such that [pi, px] = 0 and if i, < 1/4,
then (=|py|Z) > —
of pin, consumed is upper bounded by 2% /\/T — 4m;y,, and the
expected number of required individual swap tests is upper
bounded by (2% —1)/+/T — 41, moreover the protocol needs
to store at most 1 qubit and k£ + 1 qudits for preparing pg.

Proof: Let p9 = pin and 19 = nin. The fact
that [pg, p] = 0 follows directly from Eq. (58). For the
stated space-efficient implementation, observe that until pg
is prepared it suffices to store at most one copy of each of
P0, P1, - - -, Pk—1, €Xcept for a single p; where a swap test is
performed, see Ref. [69, Algorithm 3].

Our proof is inspired by the calculations of Ref. [69]. Let
us define 7; := 1 — (=|p;|=). We can verify by induction that
M < gt B (< 2). This wivially holds for i = 0
and the induction step can be verified as follows:

56

< (L by (60
’*1—2(1—m+n?) e
=3 _7714772 (since (1+m:)(1 = 2m) <1 —n; +n))
27"
‘ } 61
= 2(1 — 4o + 2270g) — 22 g o
27171'

_ Mo (62)

1 —dno + 21’
where the last inequality follows from the monotonicity of

51, and the induction hypothesis.

sSucc __

1+Tr(p?
Let us denote by pj w the success prob-

ability Eq. (57) of the swap test on p;_;. The expected
number c¢; of copies of py needed for preparing p; is ¢;
2 H] 1 psﬁcc, which is easy to verify by induction. The
1 = 0 case is trivial, and the induction step follows from the
observation that to obtain pZ“ we need to repeat the swap
test an expected number of ’Tf many times on two copies

ci
2 ks
Pita

of p;, ie., cit1 =

Succ

lpj =

We can bound ¢; by deriving the bound H
v/1 —4n, as follows

%

(I =10 -y

(by Eq. (59))

j=1 i=
> H(l —2nj-1)
j=1
i 25
ST (1 2
i 1 —dno + 227

(by Eq. (62))
=1- 4770 + 22_1770>

where the last equality follows by induction due to the identity:

(1- 143]0;72”2010)(1_4770—"_22 ‘o) = (1 —4mo +2'""np).

The expected number s; 0f swap tests used for preparing p;

can also be bounded by (2° — 1) H] 1 psﬁcc via induction:
1+ 287;
8+1 = Succ
' pz+1
1+2- (20 - DT, psicc
S Succ
pz+1
i+1 1— H _1_
. 1 j=1 psucc
_ i+1
- (2 - 1) H pjucc + pficc
< (@2 - /\/ 1 — 4no.

Proposition 7 only applies when 7, < 1/4, but the
iterated swap test can still be successful even when the
input fidelity is lower. We now consider what happens when
Min > 0. Let vip := 1 —nin = (Z|pin|Z) = A1(pin) denote the

principal eigenvalue of pi,, where the notation \;(c) denotes
the ¢-th largest eigenvalue of o. Let us assume that % <a

for some value o < 1, then we get the following guarantee on
Yout 1= (Z|pout|E)
Yin + 72
1+ Tr(pf,)
Yo + Y2

1492 + ayin(1 = yin)

Yin (L + 7in)
L+ %n + (o = 1)7in(1 = vin)

Yin

=1 P(%in)

T
) YinTrap

Yout

T (63)

which is always greater than ~in When ~i, € (0,1). Moreover

R R
L4 9in(2 — 7in + 20%in)

(1+7yin(a+ (I —a)yn))?

which means that p(+i,) in Eq. (63) is monotonically increas-
ing in 7i,; therefore, if we replace ~;, with a lower bound
on i, we still get a valid lower bound on ~,,¢. Let’s assume
that we have an “easy” scenario, where o < 1073; a direct
calculation shows that if 7, > 0.2, then p(yi,) > 0.23,
P*?(Yin) = p(p(ym)) > 0.26,...,p°(vin) > 5. By using
Eq. (59), similarly to the proof of Proposition 7 we can see
that the expected number of copies for successfully completing
the 9 iterations of the swap test is at most

>0,

8

1
29Jg01+(p0] ’Yln _28H1+ O'] ﬂ)2 (64)
218
< 226 < 11600. (65)
Therefore, one can see that in the v, = 1 — ny, < % regime

the iterated swap test still works, but its efficiency degrades
rapidly [71, Theorems 15 & 30]. In fact, even if we assume
that all non-principal eigenvalues are the same, the protocol
incurs an exponential cost in 1/, because the initial swap
tests make only a small increase in 7,,4 While they succeed
with probability about 1. see, for example, Ref. [69, Theorem
9]. Nevertheless, when i, = 1 — n;, is lower bounded by a
constant we get the desired asymptotically optimal complexity
(see Section IV-D2), by first magnifying ~i, to at least % as in
Eq. (63)-(64), and then applying Proposition 7, stated formally
as follows.

Proposition 8: 1In the setting of Proposition 7, suppose
that p;,, has principal eigenvalue 1—7;,, where 1—mn;, is greater
than Q(1). Furthermore, suppose that all other eigenvalues
of pi, are bounded above by «(1 — 7;,) for some constant
o < 1. Then the expected number of copies consumed and
the expected number of swap tests is the same as stated in
Proposition 7, up to a multiplicative O(1) constant.

Proof: This follows from a generalization of the
example above to arbitrary o < 1. |

57

2) An asymptotically optimal distillation protocol with
simultaneous use of all copies: Ref. [70] describes a state-
agnostic quantum purity amplification protocol based on the
Schur transform, which processes all copies in parallel. The
authors prove [70, Theorem I1.3] that for a generic quantum
state pi, with principal eigenvector |Z), their protocol’s sample
complexity for outputting a quantum state p,,; such that
(Z|pout|Z) > 1 — eqisy is asymptotically optimal in the
edist — 0 limit? and their protocol has sample complexity

Pm)
)\1 pm - /\l(pin))Q

d

—>

dht_>0 Edist 5
i=

+0(1). (66)

When A1 (pin) = 1 — 7in, the above expression is maxi-
mized by A2(pin) = Min, resulting in complexity
U S S
edist—0 Edist (1 - 2771n)

+ O(1),

which is rather close to the complexity achieved by Proposi-
tion 7.

If we only assume that A2(pin) < a@Ai(pim), then the
expression in Eq. (66) is maximized when all nonzero, non-
principal eigenvalues equal a1 (pin), giving rise to the com-
plexity expression

~ b 1=
2
eaist =0 Eqist (1 - a)Z"Yin

+0(1). 67)

As noted in Ref. [70], this is exponentially better in the
Yin — 0 regime (i.e., low input fidelity) than the iterated swap
test protocol described in Section IV-D1. However, a major
drawback of the corresponding protocol of Ref. [70] is that it
requires storing and processing all copies in parallel, resulting
in a large space complexity.

The authors of Ref. [71] note that there is no known
protocol that can be applied in a streaming fashion but gets
close to the complexity of Eq. (67) in the v, < 1 regime.
In the following subsection, we derive such a protocol that
uses only two qudits of memory while matching the above
asymptotically optimal sample complexity.

3) Improved distillation in the regime of small input
fidelity via quantum PCA: Now we show that a gate-efficient
procedure inspired by quantum principal component analysis
(PCA) [73], [74] requires only two qudits plus three qubits
of storage to output the top eigenstate with fidelity at least

1 — £4is¢ using
— Yin >

1 1 1
o((- v L) Lo
< Edist Vin (1 *&)2’}/121“
copies of pi, in expectation, which matches the optimal
asymptotic complexity of Eq. (67) up to a constant factor.

Intuitively speaking, the additional 1/~;, term next to
1/eqist comes from the fact that we need to find the top

9This means that for any fixed spectrum S = (A1, A2, ..., A\g) the optimal
sample complexity is adlm 2?22 ﬁ + O(1) given that p;, has
spectrum S. However, this does not say much about what happens for, say,
constant £4;5t ~ 1, see Ref. [70, Appendix D].

eigenstate within the states stored in memory. Since the
protocol of Ref. [70] stores and processes all of the required
copies in parallel, a tighter analysis might reveal that it
performs better in the eq;st > iy regime. However, once we
pay the 1/7i, price of postselection, we can very efficiently
distill further, so the overhead does not multiply with the
high-precision-induced 1/eq;s4 cost. We expect that in the
single-pass constant-storage setting, our protocol is essentially
optimal, but we leave this problem of optimality as an open
question. Finally, we speculate that one may be able to
improve this protocol’s sample complexity in the following
way: if an attempt of locating the top eigenstate failed, one
may reuse the earlier copies that were used for density matrix
exponentation in earlier rounds.

a) Density matrix exponentiation: ~ Quantum
PCA [73], [74] is based on the core primitive of density
matrix exponentiation using a fractional swap operation
exp(—iSt) = cos(t)I — isin(t)S, where I denotes the identity
operation on a two-qudit system, and S denotes the swap
operation of two qudits. Suppose that we have a density
operator ¢ on systems A and S, and we get a copy of p
on system So matching the dimension of S;. The Lloyd—
Mohseni—Rebentrost (LMR) density matrix exponentiation
primitive applies a fractional swap of S; and S, then discards
Sa, and the resulting state can be described as follows [74]:

Trg, [(]IA ® exp(—iSt)) (g ® g) (]IA ® eXp(iSt))}
= Trg,[cos’(t)s®o
+icos(t)sin(t)(s®0) (L4 ®S)
(t)sin(t)(I4 ®S)(s®0)
+sin? (1) (I®S) (s®0) (14 ®S) |
cos?(t)s

+icos(t) sin(t)s(Ia ® o)

—1icos(t)sin(t)(I4 ® o)

+sin?(t) Trg, [¢] ® o.

(68)

(see Fig. 3)

This can be viewed as density matrix exponentiation since
it represents the map ¢ +— (Ix ® e 9)¢(I4 ® €i¢) up to
corrections of order O(t2). The procedure consumes one copy
of o in order to approximately implement the unitary evolution
generated by the Hermitian operator o for a short time ¢. One
can also approximately implement controlled density matrix
exponentiation ¢ — (L1 @ (JOX0| @ T+ |1)(1|@e~¢t))¢(I4 ®
(I0X0] ® T + [1)1] ® ¢¢"*)) by choosing o = [1}1] ® ¢;
see Ref. [74, Appendix C]. We will exploit this trick in our
protocol below.

For an efficient implementation of the fractional swap
operation, note that the unitary (elY @ I)CS(e™'*X ®1) is a
block-encoding of the operator exp(—iSt)/2, with 61 defined
below and CS the controlled swap gate with the first register
acting as the control; thus, the fractional swap gate can be

58

implemented using 3 CS gates and 4 single-qubit gates
|0X0] ® (cos(t)I—isin(t)S) + [1)1]| @ (isin(t)I 4 cos(t)S)
= (Y Q1) - CS (e"0-X Zelf-X g T).
- CS (7Y Ze%Y @ T).
SCS (e X 1),
ArCCoS (cos(t)gsin(t)) + arccos (cos(t);sin(t))
D) 5
which corresponds to one iteration of oblivious amplitude

amplification. As elsewhere in the paper, X, Y, and Z refer
to the single-qubit Pauli operators.

where 04 =

b) A simple (suboptimal) protocol for the case
A2(pin) <€ A (pin) v/ A1 (pin)ediss: We now show how to use
a simple version of Kitaev’s phase estimation [102] to distill
the top eigenstate of pi, when we are promised that A1 (pin) €
[7,37], €aist < (1—7) and A2(pin) <K vv/VEdist/(1 —), for
a known value of ~. Specifically, the protocol aims to imple-
ment the following circuit involving controlled density matrix
exponentiation, which may be viewed as phase estimation to
one bit of precision.

(69)

With the right choice of 7, if density matrix exponentiation is
performed in small enough steps ¢, then there is a substantial
chance of measuring the first register in |—)(—|, and when this
occurs, the non-principal eigenstates of the input state p;, are
appropriately suppressed in the output.

The controlled density matrix exponentiation in cir-
cuit (69) is approximated with 7 = % applications of the LMR
procedure, giving the circuit in Fig. 4. Namely, consider the
effect of the LMR protocol of Eq. (68) in the special case when
the system A is not present, and the protocol is repeatedly
applied on the initial state ¢ = p(©) := [+)(+|® pi, on system
S1, using copies of the amended mixed state ¢ = [1X1] ® pin
on system S5. Denote the state (on system S) after r iterations
of the LMR protocol by p(™), which can be written as

P = Za](-’") ® Ajlvi Kb, (70)
j

where pin = > Aj[Y);)t;] is the eigendecomposition of pin

(r)

and o’ is a normalized single-qubit density operator, for

j(o) = |+)+]|. According to Eq. (68), we find that
pr) = cos? (t),o(T)

+icos(t) sin(t)p™ (|1X1] @ pin)

— icos(t) sin(t) (| 11| ® pin)p"”
+sin®() (| 11| @ pin),

example, o

Trs,[s ® o] Trs,[(s ® 0)(I4 ®S)]:
A A A A

S1 S S1 Sl S Sl

A A A A
Sl S 51 51 N Sl

Trs, [(Ia ®S)(s ® 0)]: Trs,[(Ia @ S)(s ® 0)(Ia ®S)]:

A A A T A
S1 S S1 Sl < Sl
A A A A

Sl S Sl S

Fig. 3: Diagrammatic representation [101], and simplification of the four terms in Eq. (68). For a derivation by direct computation
consider that Trs, [(® o)(Lu ®S)] = 3,(Las, ® (il)(s ® 0)(Ia ® S)(Lus, ® [i)) which is ,(<(Ls ® [i})) ® ({ile) =

Yoisa @ fiilo) = ¢(Ia @ o).

Iterate r times

-—10)

ESEI RN

X~ pout

[pin

@10 Z.emYTelex,Z o0 X g .

trace

Fig. 4: A simple procedure based on density matrix exponentiation for extracting the top eigenstate of an unknown density
operator pi,. The procedure approximately implements one step of Kitaev’s phase estimation of circuit (69). The parameters

ei _ %arccos (cos(t);sm(t)

) + %arccos (w) determine the length ¢ of the approximated density matrix evolution-

time segment per iteration. Each iteration consumes a fresh copy of p;, and the first ancilla qubit returns to state |0) after each
iteration. After all iterations are completed, the second ancilla qubit is measured in the |£) basis and we only accept the |—)

outcome.

in particular p(T'H> = Zj UJ(vT-H) ® Aj[w;)ab;| where

UJ(T+1) _)

cosQ(t)U§
(8)sin(t)o” (\g1)(1))
— icos(t) sin(t) (A 1)1[)o ")

+sin?(f) T [aﬂ 1)1
This means that o\" ™) = &, [0](-7')} for a quantum channel @,

which we analyze in the full version [9] in detail and prove
the following.

+icos(t

(71)

Proposition 9: Suppose we are given real numbers
v,ediss € (0,1), and copies of a qudit density operator piy,
such that A1 (pin) € [V,37], €aist < 1 — v and Aa(pin) <

2
7y sk, U and ¢ = 5% the
protocol of Fig. 4 succeeds with probability at least and

s

ary
X
1,

Choosing r =

59

upon success produces a state p(_T) such that [piy, ,o(_T)]=0,
and (E|p(_r)|E) > 1 — eqist, Where |Z) is the principal
eigenvector of p;i,. The protocol uses an expected number of
copies of p;, which is at most %(7 + 1), and the same order
of controlled qudit swap and single-qubit gates. The space
complexity is two qudits and three qubits of storage.

Note that if we only know that \; > v and Ay <~ Si;yfldijﬁy),
but don’t know whether \; < 37, we can still perform the
distillation using the above protocol through combining it with
standard techniques, such as exponential search to guess the
right order of AL The resulting protocol shall even have the
same asymptotic complexity up to constant factors.

c) An improved protocol for the general case:

We can improve the overhead in the previous protocol by
recursively filtering the smaller eigenvalues in a similar fashion
to Ref. [103]. As we show, it suffices to filter a constant

fraction of the unwanted eigenstates in each iteration. This
relieves the burden of error magnification due to the postselec-
tion on a small probability =~ A; event hindering the previous
simple variant described in the proof of Proposition 9. For this
purpose, we can use Kitaev’s phase estimation [102] combined
by standard error reduction techniques, which requires a total
simulation time of @(M) in controlled density matrix
exponentiation to output, with probability at least 1 —¢, a phase
estimate that is less than § off [104]. For practical considera-
tions one might also consider using improved iterative phase
estimation variants [105] or eigenstate filtering techniques
via quantum singular value transformation or quantum signal
processing [106], [107].

The controlled Hamiltonian simulation can be performed
using the same circuit as before (Fig. 4), however the subse-
quent applications of the protocol require a slightly adapted
analysis because we need to track the state of multiple qubits
and/or the entire measurement history.

Proposition 10: Suppose we are given real numbers
v, &dist, @ € (0,1), and can request copies of a qudit density
operator pj, such that Ai(pi,) > 7, eaist < (1 — «) and
A2(pin) < av. By iteratively applying the circuit of Fig. 4
with appropriate choices of r and ¢ we can prepare a state
Pout such that [pirnpout] = 0, and <E|pout|E> > 1 — cqists
where |E) is the principal eigenvector of pi,. The protocol
uses an expected number of copies of p;, which is at most
0 ((:l*laﬁ(fdlisc + %))
qudit swap gates and single-qubit gates. The space complexity
is two qudits and three qubits of storage.

, and the same order of controlled

The core of our analysis is to understand what happens when
we apply the LMR controlled density matrix exponentiation
protocol to a mixed state whose reduced density matrix
commutes with pin = >, A;[10;)(1);|, where [Z) = |¢1).

Lemma 2: Let A label a system of arbitrary finite
dimension, and let C' label a two-dimensional (qubit) system.
Suppose that we have a quantum algorithm that receives as
input a normalized state ptrt) := 37 agsmrt) ® [Xv;l,
where ") are subnormalized quantum states on the AC
register and |¢;)(¢);| are the eigenstates of p;,. If the algo-
rithm only interacts with the final register through controlled
Hamiltonian simulation I4 ® [0)0]c ® I+ 14 ® [1}1|c ®

e~'inTk then the output state can be written as p(e*d) =
> aj(.end) @ |;)(vj]. Moreover, if the total simulation time
is T = >, 7 and we approximate each such controlled

Hamiltonian simulation step by the LMR protocol with step
size at most ¢ < 7, then the output state can be written

as gD = 325 @ Jy;)y, where it holds that

5" = o{ Dy < 3T max(Te[o1"],).

The above lemma is proven in the full version of the
paper [9], and then it is used in the detailed analysis of the
above propositon, which we omit here for breity.

60

E. Resource state teleportation

Once we have prepared the resource state |¥(g))¥(g)|
(up to low error), the next step is to consume this resource
state to enact a transformation on the encoded address qubits.
Suppose the n-qubit encoded register on which we want to
apply the operation V' (g) is in an arbitrary pure state

Z au|m) Z\aw\zzl.

we{0,1}n w

@) = (72)
The teleportation procedure calls for applying a set of n
disjoint logical CNOT gates, each controlled by one of the
logical qubits in the register holding |&@) and targeting one of
the logical qubits in the resource state, and then measuring
the resource state. This was depicted in circuit (10), which is
reproduced more compactly as

@)@ ——p——— V(g™ [a)a|V (g™™)

[T(g))T(g)| =~ m
(73)

On the output label of the circuit, we have used the notation
g®™ to represent the Boolean function defined for any x by
the equation

g% (x) = glx &m). (74)

To verify the circuit’s output and the assertions in Section II-C,
note that the CNOT gates enact the transformation

BTG =505 O

w,z€{0,1}"

(—1)*@a,lw)[z)

1 -

gr 2 (D PamwEz) (75)
w,z€{0,1}m
1

=gz 2, (CDTaym)im). (76)
w,me{0,1}n

A logical measurement is performed on the resource state

register, obtaining outcome m. Regardless of the state |@) and

the function g, the distribution over measurement outcomes m

is the uniform distribution, and the post-measurement state on

the first register is
— 1 em
V™) = go 2. (D Waulw)

we{0,1}n

> (—1rEmay, fw).

we{0,1}"

1
- on/2

(77)

Examining the definition of ¢g®™, we can see that it is
defined by the same underlying table of data that defines g;
however, the addresses to which the data items have been
assigned are scrambled by adding (modulo 2) the random
measurement outcome m to each address. Nevertheless, we
may conclude that the teleportation procedure successfully
inserts information about ¢ into the phases of the state |@),
albeit in an obfuscated way, due to the fact that the phase

applied is (—1)9(“®™) rather than the desired (—1)9(*), where
m is uniformly random.

We now wish to understand what happens in the tele-
portation step if we use the state ¢(g)qis; (discussed in
Section IV-D) as our resource state, which is an imperfect
approximation to |¥(g)XW(g)|. First, we define the ideal tele-
portation channel 7 (g) as the procedure that perfectly prepares
|[¥(g)X¥(g)|, applies the logical CNOTs, and measures the
resource register (equivalently, applies a completely dephasing

channel). This has the action

Tk =5 > VG e bk,

me{0,1}m

(78)

where we have used the channel definition V(h)[p]
V(h)pV (k)" with the overlined version V(h) denoting the
logical version of the channel.

We may now argue that as long as the error of ¢(g)aist
is low, relative to |¥(g)) ¥ (g)|, the channel enacted is close

to 7 (g).

Proposition 11 (Teleportation with approximate resource
state): Let T (g)appr be the channel realized by using the state
®(9)aiss in place of |¥(g)) W (g)| in the teleportation protocol
depicted in circuit (73). Then, we have
— 1
T(9)apprlle < Sl (9)X¥(9)]

— &(g)aistll1
(79)

HoR

where ||-||o indicates the diamond norm distance between
channels.

Proof: Define the quantum operation C as the op-
eration on 2n logical qubits enacted by the CNOT gates
and measurements (i.e., completely dephasing channel) in
circuit (73). Thus, for arbitrary n-qubit state & in the codespace
of the first register, we have

T(9)lel =C [z @ [T(9)XT(g)]]
mappr[ﬁ} 6 [E & Mdist] .

Now, introduce an environment register of a qubits, and
consider an arbitrary state p on a + n logical qubits (whose
reduced density matrix after tracing out the environment is
in the codespace of the n-logical-qubit code). Let Z5 be the
identity channel on the environment register. The diamond

norm distance is defined as the supremum (over p for all
possible sizes a of the environment) in the trace distance

(80)
1)

61

between the action of the two channels

S0~ T@haperlo

micsup ;H (Z5 © T@)7] — (T © T(@)appr) Al

(82)
= mgxsgp% |@z 20 [po (T@NT@)] - 6],
(83)
< maxsup 5 lp@ (FENT@ - 2Whan) i 69
= maxsup & [T00)T(0)| - @) (85)
= LIT@NTG) ~ 5@l (36)

where the inequality follows from monotonicity of the trace
distance under quantum channels. This completes the proof.
|

FE. Adaptive correction and classical update rule

Recall that the goal is to implement the diagonal logical
QRAM unitary V (f), given a data table (Boolean function)
f. The previous section established that for any function g,
the teleportation channel 7 (g) receives a uniformly random
measurement outcome m, and then, conditioned on m, enacts
the unitary transformation |&) — V (¢®™)|@).

Our protocol repeats the teleportation process over a
sequence of n rounds. In each round, the function g will be
different, and the measurement outcome m will be sampled
independently and uniformly at random. The value of g used
in round j will be denoted ¢, and the value of m denoted
by m).

We begin in round 1 setting g = ¢(!) = £, receiving mea-
surement outcome m = m(!) € {0,1}", and enacting logical
unitary V (g®™). The key observation is that V (g®™)% = T,
the logical identity operation, and hence

Vig) =V(g) V(¢"™) V(¢*™)
=V(gad®™) V(g®™),

where we have invoked the composition rule V(h)V(h') =
V(h @ h'). Thus, given that we have already implemented
V(g®™), we must now implement the correction unitary
V(g & g®™), which is also a member of the family of diagonal
(logical) QRAM operators. We thus compute a new Boolean
function by the classical update rule UR, which takes as input
a data table ¢ and a bit string m € {0,1}"™ and outputs a new
data table

87)

UR(g,m) =g ® g™, (88)

which is depicted as a circuit as

m ;‘n=n
(89)
2m 2m
g =~ [UR - g gom

and we update g + ¢ = UR(g™), m(M) to use for round
2. Consequently, the correction unitary is now equal to V(g)
and the goal of round 2 is again simply to implement the
unitary V'(g), just as it was in round 1. As before, we receive
a new measurement outcome m = m(?), we compute ¢(3) =
UR(g®, m®), and we update g < g for round 3.

We then iterate this process a number of times. We note
that, if after applying the update rule we ever obtain g = 0, the
zero function, then we may terminate the procedure, because
the correction unitary will be V(0) = T at the next round.
Moreover, g = 1 (the constant function that outputs 1 on all
inputs), then the correction unitary is —I, which is equivalent
to T up to an unphysical global sign. We claim that after at
most n rounds, we will be certain to obtain g € {0, 1}, based
on the following proposition.

Proposition 12: Let g be an n-bit Boolean function.
Define deg(g) to be the degree of g when it is expanded as
a polynomial of its input bits over the field 5. Suppose that
deg(g) = d. Let m € {0,1}", and let h = UR(g,m), as
defined in Eq. (88). Then, we have

deg(h) <d-—1. (90)
Proof: This is a consequence of the reasoning in
Appendix D of the full version [9]. |

The proposition establishes that each application of the
update rule g < UR(g,m) decreases the degree of ¢g by at
least 1. Recall that in round 1, we have deg(g) = deg(f) <mn,
simply by virtue of the fact that f is an n-bit function. Thus,
we may assert that in round j we have g = ¢\¥) and

deg(¢U) <n+1-j. 91)

In particular, after applying the update rule in round n with
g = g(”) and m = m(™), we are guaranteed to obtain h =
UR(g, m), which leads to a degree deg(h) = 0. If the degree
of h is 0, this implies that either h = 0 or h = 1.

G. Total complexity of protocol

We have now explained the action of each component of
the protocol, and may we state its overall complexity.

Theorem 2 (Main result): Let f be an arbitrary dataset
(n-bit Boolean function) for which we wish to implement the
fault-tolerant diagonal QRAM unitary V' (f) of Eq. (1), and
let ¢ be an error parameter. Suppose that we have access to a
noisy physical QRAM device subject to dataset-independent
noise (Definition 1) which on input g produces state @(g) onn
physical qubits achieving fidelity (¥(g)|¢(g)|¥(g)) > F for
all g. Suppose further that we have the capability to reload
the QRAM device with a new dataset, and that we have

62

the capability to move the n-qubit output state to a fault-
tolerant quantum processor subject to circuit-level stochastic
noise (Definition 2) with error rate p. If p is below a constant
threshold py determined by the QEC code family, and sep-
arately if pn? is below a different constant threshold related
to the fault-tolerant encoding procedure, then there exists an
adaptive distillation—teleportation procedure that implements a
quantum channel Ppt for which

%HPDT——VT?SHii?Ska;s. (92)

The protocol uses (in expectation over internal randomness)
@ queries to the noisy physical QRAM device, () applications
of the encoding process Epr (Corollary 1), and @’ additional
fault-tolerant operations (controlled-SWAP, Hadamard, CNOT,
single-qubit logical state preparations, and single-qubit logical
measurements), where

o) o
Q'=0(nQ) . (94)

Additionally, the protocol applies the classical update rule
(Eq. (88)) at most n times, and the classical partial Clifford
twirling operation g — g¢ (Eq. (37)) @ times, each time on
a data table of size 2" classical bits.

Proof: The protocol is depicted as a quantum circuit
in Fig. 2. We begin with correctness. In each of the n rounds
indexed by j = 1,...,n, it implements a channel 7 (g\)). As
discussed in Section IV-F, if all resource states are prepared
perfectly, the procedure is guaranteed to implement the unitary
V(f), up to a global sign which does not impact the channel

VALV

However, the teleportation channel 7 (g")) is not im-
plemented perfectly by the protocol. To ensure the overall
diamond norm error is ¢, it suffices to choose parameters such
that 7 (g) is implemented up to £/n diamond distance for all
g, since the errors from each of the n channel applications
add linearly in the worst case, when performed in succession.
By Proposition 11, it suffices to distill resource states @dm
that satisfy

SNTG@NT)] ~ 5@l < casm

with distillation error €4isy = €/n. Meanwhile, by Proposi-
tion 6, this is accomplished by the distillation protocol using
O(%(ﬁ + Fnl,;n)) copies of the input states ¢(g)twirls
defined in Eq. (49), provided that for all g (¥ (g)|¢(g)|¥(g)) >
Finin for some Fl;,. We are guaranteed from Corollary 1 that
Fuin > (1 = O(np) — O(n./p))F, which can be replaced by
Q(F) as long as pn? is below a certain constant. The number
of gates required by distillation is a factor of O(n) larger than
the number of copies.

95)

Since there are n rounds, we require n calls to the
distillation procedure. Thus, the total number of queries to the
noisy QRAM device and the poly(n)-cost encoding procedure

gFT is

Q=0 (M (96)

n 1

(7))
The total fault-tolerant gate complexity from distillation is
O(n@). The teleportation procedure also requires n fault-
tolerant CNOT gates in each of the n rounds. Finally, the
Clifford twirling step requires the application of O(n?) fault-
tolerant Clifford gates for each of the) copies. In total, these
Clifford gates dominate the fault-tolerant gate count, which is
Q' = O(n2Q). Each round requires only one call to the update
rule, and each of the @) copies requires classically applying a
partial Clifford update g — g¢c. This completes the proof. M

V. COMPLEXITY OF THE CLASSICAL UPDATE RULE

The classical update rule calls for updating a data table
g to the data table h = UR(g,m) = g ® ¢g®™, for a certain
fixed measurement outcome m € {0, 1}", as in Eq. (88). That
is, the entry at address x in the data table should be updated
from g(x) to g(x) ® g(x @ m). In this section, we analyze
the complexity of this transformation under several different
frameworks. The guiding question is to understand the ways
in which the classical update rule is a more complex operation
than a RAM query.

We note that the partial Clifford twirling step also requires
substantial classical computation to randomly transform the
dataset. We do not specifically analyze this step here, because
we view it as less fundamental to our protocol. For example,
if the physical QRAM device and encoding step were error
free (or if they have errors but the principal eigenvalue of the
resulting state is correct), then partial Clifford twirling is not
necessary, but the need for the update rule remains.

A. Classical circuit complexity

The update rule takes 2" + n bits as input and produces
2™ bits as output, as in circuit (89). It is straightforward to
see that a classical circuit built from elementary gates (NOT,
AND, NAND, etc.) would require £2(2") gates to implement
the update rule. Observe that for any fixed nonzero value m #
0", we have for every x

h(z) = h(z®

That is, the 2" addresses are partitioned into pairs {z,x ®
m}, where h takes the same value on both elements of the
pair, and its value is equal to the parity of the input bits at
locations 2 and x ®m. Each of these 2"~ ! parity calculations
is independent and requires at least one elementary gate.

m) = g(z) & g(x ®m) 97)

B. Complexity in a classical RAM model

The need for 2(2") circuit complexity does not alone
entail that the update rule is an expensive classical calculation.
After all, the standard RAM operation also has 2(2") circuit
complexity, but it is commonplace to consider a model of
classical computation where RAM has unit cost.

However, the single-bit RAM operation takes as input n
bits (an address) and returns just 1 bit, so it appears to be a

63

much simpler operation than the classical update rule. Since
(i) the output of the update rule has 2™ bits, (ii) the output
depends on all 2™ input bits g(z), and (iii) each RAM query
can access only 1 of the bits, we conclude that, in a model
where the input data g can only be accessed via RAM queries,
implementing the update rule requires £2(2") RAM queries.

C. Classical circuit depth in an all-to-all model

The structured nature of the update rule suggests it may
still be amenable to some degree of parallelization. Ideally,
one could design a specialized shallow circuit that directly
implements the update, rather than relying on RAM. Indeed,
if one imposes no restrictions on spatial layout of the 2" +n
input bits and 2" output bits (i.e., one allows all-to-all gates),
then one can perform the update rule with a classical circuit
of depth O(n) comprised of elementary gates each acting on
only O(1) bits.

We provide one possible way to accomplish this. The
construction requires O(n2™) ancilla bits and has the following
steps; we provide an n = 3 example to assist with understand-
ing each step in Fig. 5 (and in the description of each step, we
reference the colors in that figure for clarity of explanation).
Let e; refer to the length-n bit string with a 1 in the ¢-th
position and 0 in the other n — 1 positions.

1) For each z € {0,1}" in parallel, the (blue) bit holding
g(x) is copied into a (yellow) ancilla bit, accomplished
in depth 1.

2) For each ¢ = 1,...,n in parallel, the (green) input bit
holding m; is copied into 2"~ — 1 (gray) ancilla bits,
accomplished in depth n — 1 (using a tree-like approach,
the number of copies of m; can be doubled with each

additional circuit layer).

3) For each ¢ = 1,...,n in series, and for each of the
21 address pairs {z,r @ ¢;} in parallel, if m; = 1
then the (yellow) ancilla bit which held the copy of
g(x) at the beginning of this step is swapped with the
(yellow) ancilla bit which held the copy of g(x @ e;)
at the beginning of this step. Each value of ¢ requires
depth 1: the availability of 2" ! (green and gray) copies
of the m; bit created in step 2 allows parallelization of
the m,-controlled {z,z & e;} swaps. Thus, the overall
depth of this step is n. Over the course of the n steps,
the (yellow) ancilla bit that originally held g(z) before
this step undergoes the transformations

g(x) = g(x ®myey) = g(x & myie; ®maoes) =

S gl @ P mies) = gz &m), 98)
i=1
that is, for each z, the (yellow) ancilla bit originally

holding g(z) now holds g(z & m).
For each = € {0,1}" in parallel, the (yellow) ancilla bit
that originally held the copy of g(z) after step 1 (which
now holds g(xz @ m)) is added modulo 2 into the (blue)
bit holding g(x), incurring depth 1.

4)

5) The original 2™ (blue) input bits are taken to be the 2"
output bits; the ancilla bits are discarded.

The registers (blue) holding the original bits g(z) have now
been updated to h(z) = g(x)® g(x Hm), which is the desired
output of the update rule.

D. Classical circuit depth in a spatially local model

If the input and output bits of the shallow circuit are em-
bedded into d spatial dimensions, then the O(n)-depth circuit
above requires spatially nonlocal gates. For example, we may
recognize the action of step 3 as a re-arrangement of the 2"
(yellow) ancilla bits by traversing edges of the n-dimensional
Boolean hypercube. In d = n spatial dimensions, this could
be done using spatially local gates, and each (yellow) classical
bit need only interact with O(n) of the 2" other (yellow) bits
(its neighbors on the hypercube). Unfortunately, real classical
circuits must be embedded into d < 3 spatial dimensions. In
this case, step 3 cannot be performed exclusively with spatially
local gates for more than d of the values of ¢ € {1,...,n}.

In fact, we can show that if gates are local in d spatial
dimensions, then the depth required is at least 2(2"/%). This
follows from the fact that without knowing the value of m,
the circuit must be prepared to connect the bit at address z
to all 2" — 1 of the other bits; for any pair z,y € {0,1}",
if m = x @ y, then the circuit must be able to compute the
parity of g(z) and g(y). If the bits storing g(x) and g(y)
live on opposite sides of the d-dimensional array, computing
this parity will require a classical circuit with depth at least
Q(2"/4). Ultimately, this essentially amounts to a speed of
light-type restriction, where depth is restricted due to the fact
that information can only move so quickly through space. This
kind of argument could also be used to show that classical
RAM requires a circuit of depth (2"/¢) in a local model, in
d spatial dimensions, so it does not represent a fundamental
limitation that is unique to QRAM.

E. Wire density

While speed of light—type restrictions can be relevant for
RAM at large scales, they are not a factor in practice at small
or intermediate scales. If one ignores the speed of light, one
can simply build long wires into the circuit and enable all-
to-all connectivity. These long wires should not be thought of
as completely free, however. For example, electronic ciruits
typically dissipate energy and lead to heating in proportion to
their total wire length. The need to cool electronic chips is
a key limitation in practical computer systems. Thus, a cost
metric worth considering [8] is the wire density of the circuit,
which we define as the total wire length divided by the total
spacetime of the circuit, where the spacetime is defined as the
number of bits the circuit uses (henceforth referred to as the
circuit width) multiplied by the circuit depth.

Classical circuits for RAM can have depth O(n), width
O(2™), and total wire length O(n2") [8], even when embedded
in one spatial dimension. Thus, the wire density is a constant

64

with respect to n, suggesting the circuit can be scaled without
causing heating issues.

We now examine the circuit for the update rule described
in Section V-C. It has depth O(n) and width O(n2"). Steps 1
and 2 perform copying of the bits and contribute wire length
O(n2™). If the circuit is embedded in n spatial dimensions,
then step 3 can also be accomplished with total wire length
O(n2"), as each gate is local and has O(1) wire length.
However, in d < 3 spatial dimensions, the wire length is
asymptotically larger. To implement step 3, the (yellow) ancilla
bits storing the copy of g(x) must be connected to the (yellow)
ancilla bits initially storing the copies of g(z @ e1), g(z D ea),
.., g(z®e,)—essentially, an embedding of the n-dimensional
Boolean hypercube into d dimensions. Consequently, the total
wire length of gates acting on each (yellow) ancilla bit will
be at least 2(2"/%). Since there are 2" (yellow) ancilla bits,
the overall wire length of the circuit is at least Q(2"(1+1/4)
and thus the wire density grows with n as Q(2™/%/poly(n)),
a fundamentally different outcome than the case of classical
RAM.

F. Relation to matrix-vector multiplication and the Walsh—
Hadamard transform

Matrix-vector multiplication for 2" x 2™ matrices is an
operation with 2™ inputs (the entries of the input vector) and
2™ outputs (the entries of the output vector). This feature is
similar to the update rule, although the inputs and outputs for
matrix multiplication would typically each be multiple bits
(e.g., an integer or floating point number), rather than just a
single bit. Moreover, the analysis of Ref. [8] demonstrated
how classical sparse matrix-vector multiplication requires a
growing wire density, consistent with the observation above
for the update rule.

Here, we will argue that the update rule is in a certain
sense equivalent to a sparse matrix-vector multiplication, and
specifically it is equivalent to the Walsh—Hadamard (WH)
transform up to factors of poly(n). This equivalence holds
under a parallel model of computation. Namely, we assume
that we have 2" classical co-processors, each with poly(n)-
size local memory, which may perform local arithmetic on
their memory in parallel, but cannot communicate with one
another, except through joint application of the update rule
or through joint application of a sparse matrix-vector multi-
plication. When jointly applying the update rule, each of the
2™ processors supplies one entry g(z) and receives the output
h(z) = g(x) ® g(x ® m) for a fixed global m. When jointly
applying sparse matrix-vector multiplication, each processor
provides one of the 2" entries of the input vector and receives
one of the 2" entries of the output vector. The remainder of
this subsection aims to justify this claim of equivalence.

1) The (fast) Walsh—-Hadamard transform: The WH
transform is the multiplication of a length-2" vector by a
2™ x 2™ matrix denoted by H, where the matrix element

my | mo | mg 9(0) 1 0 1 1 1 0 1 1 1 1 0 1 1 1
9(1) 1 1 1 1 0 1 1 1
9(2) 1 1 1 1] 0 1 1 1
96) | for example 0 step 1 0] 0 step 2 Lfo|1rfo}]o
— — — step 3
a(4) 0 oo o o | ST
9(5) 1 1 1 1 1 10 |1 |1 1
9(6) 0 0| o o] o 1 0 1 1 1
9(7) 1 1|1 1|1 1o |1 fof1
1o 1|1fo
1|0
h(0) 1o |1 1] 0 1o |1 1 1 1o |1 1 1 0| 1
h(1) 1o 1 o] 1o 1 fof1 tlo 1|11 1| o
h(2) 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1
WO | weps | L]0 Lo 0| wepa [Lot oo TPF o] 1] Aep 5
= <« i=2
h(4) 1] 1|0 100
h(5) 1[0 1|1 0| 1
h(6) 0| o0 0ol o 1| o
h(7) I) 1|1 0| 1

Fig. 5: Step-by-step action of the O(n)-depth classical circuit that implements the update rule g — h = g ® g®™, for a
particular n = 3 example input with m = (1,0, 1). Each box stores one bit of information, and each step modifies some subset
of these bits with parallelized layers of local gates (note that step 2 requires n — 1 layers to create all 2"~! — 1 copies of each
m;). The inputs to the update rule are the n bits of m (green) and the 2" bits in the classical data table storing g (blue). The

circuit utilizes 2" 4+ n(2"~! — 1) ancilla bits (gray and yellow).

associated with the transition from n-bit input address y to
n-bit output address x is given by

1
on/2
We can see that H,, is a dense matrix—all of its entries are

nonzero—however, it can be shown that it is the product of n
sparse matrices. Specifically, let H(®) be defined as'”

Hyy= —(—1)"¥ (99)

1 fx=yde;
HY) = (~1)mw ifx =y (100)
0 otherwise
Then, it holds that
H = 2:/2 HMEO=D g g0 (101)

This fact can be verified by noting that the nonzero offdiagonal
entries of H(*) are matrix elements Hq(fq,) where v and v differ
only on the i-th bit. Thus, any offdiagonal transition element
H, can only be obtained in the product H® ...qFO by
choosing the corresponding offdiagonal entry of H(9, (equal
to 1) whenever x; # y; differ, and the diagonal entry (—1)%i¥:

10We note that the matrix H(¥) is proportional (by a factor v/2) to the
transformation applied to the amplitudes of a quantum state when a single-
qubit Hadamard gate is applied to the i-th qubit, and identity is applied to
the other n — 1 qubits. The full WH transform is the product of the H (%)
matrices, that is, the Hadamard gate on all n qubits.

65

of H® whenever x; = y;. This gives precisely the quantity
(—1)Zimivi = (=1)=Y,

Matrix multiplication by H(?) requires only O(2") arith-
metic operations, since each row of H (@) has only 2 nonzero
entries. The fast WH transform utilizes this decomposition to
implement multiplication by H in classical time poly(n)2",
much smaller than the €(22") time required to multiply
general dense matrices that do not have this kind of decom-
position.

2) Reduction from update rule to Walsh—-Hadamard
transform: Now, we show how the update rule can be ac-
complished with two applications of the WH transform and
parallel local arithmetic. Let g denote the length-2" vector
with entry g(z) at index z, and let h denote the length-2"
vector with entry g(x) 4+ g(x @ m) at entry . Note here that
we are using normal addition +, rather than modular addition
@, and we allow h to take integer values in {0, 1,2}. We have

that the z-th entry of the matrix-vector product Hh is

1 .
(Hh)e = o > (“1)"(gw) +9ly@em) (102)
y€e{0,1}n
1 n
= |2 > (=1)"g(y)
ye{o,1}n
+ =™ Z (=)= WM gy & m)| (103)
on/2
ye{0,1}"
= (Hg)s + (=1)""(Hg)a (104)
_ 2(Hg), %fm-mzo (105)
0 ifm-z=1
That is, the WH transform Hh of the update rule output h

can be easily computed from the WH transform Hg of the
update rule input g.

Let M (™ be the diagonal matrix for which Mé;") =2
if m-z=0and M%) =0if m-z = 1. Then, we may use
the equation above to say that Hh = M Hg. Since H? =1,
we then have

h=HHh=HM™ Hg (106)

This gives a straightforward way to transform g +— h in
the model where 2" classical co-processors can perform local
arithmetic in parallel or jointly perform the WH transform.
First, we assume that 2" processors each locally store the bit
g(z) for one address x, and an n-bit copy of m (note that a
copy of m could be pre-distributed to each of the 2" processors
via a tree-like circuit of constant wire density, as in step 2 of
Section V-C). Then, g — h is accomplished by applying the
WH transform, applying the diagonal transformation M (™),
and finally applying the WH transform again. The x-th entry
of the diagonal matrix M (™) can be computed in O(1) depth
locally by the z-th processor acting on its internal memory. We
recall that h may have entries in {0, 1,2}; to recover binary
entries, we simply take every entry modulo 2 via parallel local
arithmetic, which does not discard any important information,
owing to the fact that (—1)9(®)+9(=&m) — (_1)9(z)@g(z&m)

The conclusion is that O(1) applications of the WH
transform, along with parallel local arithmetic, is sufficient
to implement the classical update rule, or in other words, the
classical update rule is no harder than the WH transform.

3) Reduction from WH transform to update rule: Now,
we show the converse: that the WH transform can be im-
plemented using poly(n) applications of the update rule
along with parallel local arithmetic. Specifically, we aim to
implement the matrix transformation H ("), Suppose we are
given a vector g of integers each represented by at most n
bits.!! Let g(z) denote the integer corresponding to the entry

"'The assumption of integer entries is without loss of generality. If the
entries are not integers but rather non-integer numbers expressed in binary
with a finite number of bits of precision, then we can always multiply by a
power of 2 so that all the entries are integers, and divide by that power of 2
after performing the calculation.

66

of g at address x, which is stored in the local memory of
one of the 2" processors. Let g;(x) denote the j-th bit of the
integer g(x). We perform the following steps

1) For each address x, the co-processor storing g(z) makes
a copy of g(x) in its local memory.
2) We fix global n-bit string m = e; (known by all
processors) and for each j, the 2™ co-procesoors jointly
apply the update rule UR(g;,e;) onto the set of 2™ bits
g;(z) (i.e., bit-wise application of update rule). For each
x € {0,1}", and each j, the co-processor at address x
now has in its memory the value g;(z) and the value
9i(x) ® g;(x @ ;).
For each x and each j, the co-processor at address x
performs local arithmetic to add (modulo 2) the local
register holding g;(x) into the local register holding
9j(2)Bg,(xBe;) so that the two registers now hold g;(z)
and g;(z @ e;). Effectively, this step and the previous
step have together performed a swap g(z) <> g(z @ e;)
between the various co-processors.

3)

4) For each address x, the co-processor at address = takes
the local register holding integer g(z) and flips it to
—g(z) only if z; = 1.

5) Finally, for each address z, the co-processor at address x
adds the local register holding (—1)*ig(x) into the local
register holding g(z®e;), such that the latter register now
holds g(z & e;) + (—1)%ig(x).

The latter register in the local memory of co-processor x
now holds precisely the value (H()g),, indicating that the
co-processors have successfully managed to apply one step
of the fast WH transform. Accomplishing this required one
application of the update rule for each bit of the entries
of the vector. Assuming the integer entries have at most
poly(n) bits, this means H?) can be accomplished with
poly(n) applications of the update rule, and local arithmetic,
specifically, copying (step 1), bit-wise addition mod 2 (step
3), negation (step 4), and integer addition (step 5).

Since H is the product of n matrices H® up to a
proportionality constant, we conclude that poly(n) applica-
tions of the update rule are sufficient to implement the WH
transform in this model of computation; in other words, the
WH transform is no harder than the update rule, up to a factor
of poly(n).

4) Performing general sparse matrix-vector multiplica-
tion using the update rule: Multiplication by H® is in
some sense easier than multiplication by an arbitrary sparse
matrix, since (i) the location of the nonzero entries is highly
structured and (ii) all entries are £1, avoiding the need for any
integer or floating-point multiplications. The only arithmetic
required is addition and subtraction. Here we discuss how the
update rule can also be used for arbitrary sparse matrix-vector
multiplications.

Lemma A.3 of Ref. [8] examines performing general
sparse matrix-vector multiplication using parallel classical co-
processors, each capable of local addition and multiplication.

If the parallel processors can communicate with each other
via links that form a sorting network, then the sparse matrix-
vector multiplication can be accomplished in roughly the time
required to perform a sort using the sorting network. As
shown in steps 2 and 3 of the procedure in Section V-F3,
the update rule and parallel bitwise xor together allow a swap
of data at location = and location x & e; for all x in parallel.
By copying the data before performing the swap, and then
choosing whether to discard the original copy or the swapped
copy, one can use the update rule to swap in parallel any subset
of the location pairs (z, z@e;). Thus, the ability to perform the
update rule enables access to parallel swaps along a Boolean
hypercube connectivity in n dimensions, a model for which it
is known that sorting can be completed in poly(n) time [108],
[109]. Together with Ref. [8, Lemma A.3] this shows how
poly(n) applications of the update rule and poly(n) rounds
of parallel local arithmetic on the database entries enables
arbitrary sparse matrix-vector multiplication.

Unlike for the WH transform, this procedure for ar-
bitrary sparse matrix-vector multiplication also requires the
local arithmetic to include multiplication, rather than just
addition. However, poly(n)-bit integer multiplication can be
accomplished with only poly(n) integer additions. In any case,
this suggests that the update rule is essentially equivalent to
a general sparse matrix-vector multiplication, at least in this
model where parallel local arithmetic is possible. We note that
it could still be possible that in practice that the constant and
poly(n) prefactors for the update rule are substantially better
than those for general sparse matrix-vector multiplication.

G. Concluding comments on parallelization of the update rule

The above arguments establish that the update rule can
be parallelized to O(n) depth, but only in a model where
all-to-all gates are possible. Embedding this all-to-all circuit
into a finite number of spatial dimensions causes the circuit to
have wire density that grows exponentially with n, a feature
that suggests the parallelized update rule is less scalable than
classical RAM. It is unclear whether this growing wire density
is problematic for practical sizes of n.

Relatedly, we have shown that in a parallel model of
computation, the ability to apply the update rule is roughly
equivalent to the ability to apply a sparse matrix-vector
multiplication, and there is a particularly close connection to
the WH transform. In many instances, sparse matrix-vector
multiplication can be parallelized very successfully in practice,
for example, by leveraging graphics processing units (GPUs),
where the parallelization is hardwired into the chip. This
comes despite the fact that, asymptotically speaking, the wire
density of a sparse matrix-vector multiplication would increase
exponentially with n [8]. Since the classical update rule seems
to be an operation that is no harder than a sparse matrix-vector
multiplication, we are hopeful that it would be possible to
effectively parallelize the classical update rule in practice.

However, this argument also clarifies the opportunity cost
of the classical resources dedicated to performing the update

67

rule. For example, if the quantum algorithm requiring fault-
tolerant QRAM aims to solve a certain linear algebra problem,
one must consider whether the classical device that performs
the classical update rule is capable of solving that problem
on its own, without the need for a quantum computer at all.
After all, many linear algebra problems, such as solving sparse
linear systems, can be solved using a small number of sparse
matrix-vector multiplications; see Section VI-B and Ref. [8].

VI. APPLICATIONS

In this section, we make a coarse attempt at estimating
the resources required by our protocol in several applications.
The goal is to shed light on which aspects of our protocol are
most in need of improvement for it to be useful.

Generally, these applications come in two flavors—first,
there are big-data applications that heavily rely on QRAM
and require the cheap QRAM assumption from Section I to
have a significant quantum speedup. For these applications,
conceptually speaking, the limiting aspect of using our pro-
tocol is the exponential classical computation required to do
the update rule (and the Clifford twirling), as this prevents
a true exponential speedup and full justification of the cheap
QRAM assumption. One must always consider that the classi-
cal resources required to perform the update rule could be re-
purposed directly toward solving the computational problem;
in Section V, we discussed how the classical update rule is
in a sense equivalent in complexity to a sparse matrix-vector
multipliation.

The second flavor of application are those where the
QRAM operation of Eq. (1) (or its b-bit generalization, dis-
cussed in Appendix A of the full version [9]) is required, but
the cheap QRAM assumption is not essential—cryptanalysis
and chemistry, below. In fact, in these applications, the fault-
tolerant QRAM operation is typically compiled as a space-
efficient quantum circuit, requiring only O(n) logical qubits
and Q(2") depth—in this context, the operation is often
referred to as QROM (quantum read-only memory) [76], rather
than QRAM. Assigning QRO(A)M cost ©(2™) does not nec-
essarily jeopardize the possibility of quantum advantage. This
is an appealing place to apply our protocol, because it may be
viewed as offloading exponential resources from the quantum
processor to the classical processor, which is typically a
favorable trade. The issue we face here is that the O(1/¢)
overhead for distillation in our method compares unfavorably
to the polylog(1/e) overhead achieved for distillation of 7" and
CCZ magic states, and € may need to be taken quite small
if QRAM is applied many times. Furthermore, the values of
n encountered in practice may not be sufficiently large for
the asymptotic advantage of our method to kick in, although
future improvements could cut down on the overhead of our
protocol.

A. Arbitrary quantum state preparation

Our protocol for fault-tolerant QRAM could be used
to prepare an arbitrary m-qubit state, given a list of its 2™

amplitudes stored in classical memory. This subroutine could
be useful for preparing initial states for the simulation of the
dynamics of many-body systems or ansatz states for quantum
phase estimation or variational algorithms. It would also be
useful in certain algorithms for quantum machine learning or
solving differential equations.

The process for creating an arbitrary state with QRAM
goes roughly as follows [15]. First, one classically pre-
processes the 2" complex amplitudes that define the state
(comprising 2”1 — 2 independent real degrees of freedom,
accounting for normalization and an unphysical global phase)
to compute a list of 2”+! — 2 rotation angles. The arbitrary
state can be prepared through a sequence of steps labeled by
i =1,...,n.On step %, a single-qubit rotation is performed on
qubit 7 by one of 2°~1 angles; which angle to use depends on
the setting of qubits 1,...,7—1. If the angles are accessible via
QRAM, the quantum algorithm can compute the angle with a
single query by using qubits 1,...,7 —1 as the address. Once
the angle has been read in, the single-qubit rotation on qubit
i can be efficiently performed, and then a second query to the
QRAM can be made to uncompute the angle. For more details
on this strategy, see for example Refs. [12], [15], [39], [110].
At most 2n fault-tolerant QRAM queries would be required,
two queries each to datasets of sizes 1,2,4,...,2" angles.
These O(n) queries could be implemented fault-tolerantly
by our protocol—by Theorem 2, each of the n fault-tolerant
queries can be implemented up to error £/n (so that the total
error is €) using O(n3/¢) queries to the physical QRAM
device that can coherently access datasets of size up to 27,
giving a total of O(n*/¢) physical queries. However, we note
that it is possible the n dependence could be improved by
leveraging the fact that only a small fraction of these queries
truly require the full 2"-size QRAM.

Thus, our protocol could represent a great improvement
over the ©(2") fault-tolerant quantum gates (of which at
least ©(1/2") must be non-Clifford gates [39]) required by
a standard circuit approach to state preparation. Since state
preparation is typically only one component of a larger algo-
rithm, whether this would be a worthwhile approach within
end-to-end applications may depend on the details of the
application.

B. Quantum machine learning

The quantum linear system algorithm [22] prepares a
quantum state |x) encoding the solution to a well-conditioned
2™ x 2™ linear system Ax = b using only poly(n) queries to
data access oracles for the entries of the matrix A and the
vector b. Thus, remarkably, the number of queries needed
can be exponentially smaller than the size of the matrices
and vectors themselves, due to the ability of the quantum
algorithm to explore the exponentially large Hilbert space
in superposition. This insight, and the broader framework of
quantum linear algebra [32], [106], [111], has led to a number
of quantum algorithms in the realm of machine learning [10],
[11], where linear algebra problems are ubiquitous.

68

When the entries of A and b have succinct formulas,
the data access oracles can be implemented with poly(n)
gate complexity directly on a fault-tolerant quantum processor.
However, in big-data applications, it is more relevant to
consider A and b as having arbitrary entries determined by
the data, which is stored in classical memory. In these cases,
the data access oracles, for example, a unitary block-encoding
of A [106], [110], [111] or a state-preparation unitary for |b)
(see Section VI-A) can be implemented with poly(n) QRAM
queries. Since these algorithms will require many quantum
gates and many calls to the data access oracles to solve
an end-to-end machine learning problem, they will only be
possible once fault-tolerant quantum computers are available,
and furthermore, to potentially provide exponential speedups,
they will require the ability to perform QRAM fault-tolerantly
at cost poly(n) (cheap QRAM assumption from Section I).

It is worth briefly mentioning that many of these quantum
machine learning algorithms have been dequantized [112]-
[117], in the sense that quantum-inspired classical algorithms
can also achieve poly(n) complexity for problems involving
datasets of size 2", using the ability to query individual entries
of the dataset (e.g., via RAM) and also to sample an entry with
probability proportional to its magnitude (a classical analogue
of arbitrary state preparation). In these cases, the quantum
algorithm cannot provide an exponential speedup. Polynomial
speedups may still be possible if the cheap QRAM assumption
holds. Moreover, these classical methods do not apply in every
case; notably, when the matrices involved are sparse and high
rank, the possibility of exponential quantum speedup persists
[118], provided that the cheap QRAM assumption is true.

To see how our protocol impacts the outlook of these
applications, we suppose generically that a quantum machine
learning algorithm requires poly(n) fault-tolerant quantum
gates and poly(n) fault-tolerant queries to QRAM to complete
its task. By implementing QRAM using our fault-tolerant
QRAM protocol with error parameter ¢ = 1/poly(n), the
problem can be solved with poly(n) fault-tolerant gates and
poly(n) calls to the faulty physical QRAM device, which
keeps open the possibility of superpolynomial speedup in
quantum resources, here assuming that the computational cost
of the physical query is also poly(n).

However, our protocol also requires classical compu-
tations of complexity O(2") to perform the update rule.
Although this classical complexity may be parallelized, as
we discussed in Section V, it is essentially equivalent to the
ability to perform a sparse matrix-vector multiplication for a
vector of size 2". This is a crucial caveat for machine learning,
since sparse matrix-vector multiplication often suffices to ef-
ficiently solve the problem in the first place (see discussion in
Ref. [8]). For example, the classical conjugate gradient method
[119], [120] can invert well-conditioned, sparse linear systems
Ax = b with poly(n) sparse matrix-vector multiplications.
In fact, the number of sparse matrix-vector multiplications re-
quired by conjugate gradient has better asymptotic complexity
(scaling as the square root of the condition number for positive

semidefinite A) than the number of QRAM calls required by
the quantum linear system algorithm (scaling at least linearly
in the condition number [121]). This suggests that in a generic
instance of the sparse linear system problem, it would be more
efficient to apply Q(2") classical computational resources
directly toward solving the linear algebra problem, rather than
to perform the update rule required by our protocol.

That said, a few opportunities remain. For instance, one
can consider the case that the sparse 2" x 2" matrix A has
repeated entries or some other kind of high-level structure,
such that the number of classical degrees of freedom is asymp-
totically less than 2. For concreteness, suppose that the size
of the dataset determining A is only \/27. Then, the QRAM
operation needs only to be applied for size-/2" datasets, and
the classical complexity of the update rule is only O(y/27),
quadratically cheaper than the number of arithmetic operations
required for a full matrix-vector multiplication by the matrix
A. In this situation, our protocol may enable an end-to-end
solution with poly(n) quantum cost and O(v/2") classical
cost, which could represent a quadratic speedup in terms
of classical complexity and an exponential speedup in terms
of quantum complexity. While quadratic quantum speedups
are typically thought of as insufficient to overcome the large
disadvantage in constant prefactor for quantum computation
[75], a quadratic classical speedup faces no such obstacles,
and could be considered quite large. Generalizing this line
of thinking, we may expect to find end-to-end speedups in
situations where the best achievable classical complexity is
asymptotically greater than the number of classical degrees of
freedom of the problem. Toward this end, another example
worth exploring may be the inversion of dense matrices with
0O(2?") degrees of freedom, which generally requires 2+
classical arithmetic operations with w > 2. It remains to find
concrete end-to-end examples where quantum advantages of
this kind may come to fruition.

C. Cryptanalysis

Shor’s algorithm for factoring or computing the discrete
logarithm relies on performing coherent modular arithmetic.
Gidney’s windowed quantum arithmetic [122] has been used
to reduce the cost of Shor’s algorithm by replacing some of this
costly arithmetic with coherent reads from a quantum lookup
table of classically precomputed values [123], [124]. The
algorithm can be expressed as repeated blocks of a coherent
lookup table read, each followed by a coherent addition.'? We
investigate the performance of our distillation-based QRAM
scheme for implementing the coherent lookup table reads in
Shor’s algorithm. Elliptic curve cryptography (ECC) is a more
attractive target than factoring because of the smaller number
of calls to the lookup table, which allows a less stringent
target €, as well as the high cost of elliptic curve addition
compared to modular addition. We follow the presentation of
Ref. [125], where Shor’s algorithm for ECC is presented as

12This could be regular addition, modular addition, or elliptic curve point
addition.

69

two applications of quantum phase estimation on unitaries of
the form:

Ux|R) = |R + X), (107)

where R = (x,y) is an elliptic curve point, and X denotes
either the base point P or the public key (). The goal is to
compute integer j such that Q = [j]P, where the notation
[f] indicates that we are performing elliptic curve scalar
multiplication of the point P j times (see Ref. [125] for
full definitions of the addion and multiplication operations).
Quantum phase estimation uses controlled unitaries of the
form Uf; for 0 < j < k — 1, where k denotes the number
of bits in the ECC scheme (e.g., ECC-256). In Ref. [125],
windowed quantum arithmetic is used to replace blocks of
16 controlled unitaries with a single QROM load of 26
classically pre-computed values. The load is followed by an
elliptic curve addition operation. The cost of loading N pieces
of classical data from a QROM is N Toffoli gates. For
N = 216, this is approximately 6.5 x 10* Toffolis. We note
that this is much smaller than the cost of the elliptic curve
addition operation, which is approximately 8.34 x 10%. The
minimum Toffoli cost of the algorithm is obtained by loading
groups of 2'° values, while the minimum active volume cost
is obtained at 216 values.

For the sake of calculation, we suppose that the phys-
ical QRAM device produces states with minimum fidelity
of F 50%, and we seek to achieve error ey; = 0.1
(where ey is the sum of the errors of all QRAM loads in
the algorithm). We use the generalized b-bit version of our
protocol from Appendix A of the full version [9]. If we choose
the iterated swap test distillation protocol for its simplicity
(each swap test requiring exactly n + b non-Clifford Toffoli
gates), for non-vanishing F’, the number of non-Clifford gates
for distillation scales roughly as O((1 — F)n?(n + b)/¢))
with ¢ the error per fault-tolerant QRAM query (note that
the twirling and teleportation steps are entirely Clifford). For
F ~ 50%, and assuming for simplicity a constant prefactor
of 1, we estimate the non-Clifford cost as n?(n + b)/(2¢).
We use this expression to calculate that the QRAM-based
approach achieves its minimum Toffoli and active volume cost
at a group size of 254 values, which is impractically large for
the classical update step of our scheme. A more realistic size
of 232 values only increases the costs by approximately 10%.
Nevertheless, both the minimum Toffoli and active volume
costs of the existing QROM-based approach are approximately
a factor of 1.8 and 1.6x lower than the minimum costs of our
QRAM-scheme, respectively, and we have not even considered
the computational cost of applying the QRAM device itself. A
major contribution to the cost of our method stems from the
large amount of data to be loaded (b = 512), which features
multiplicatively in our Toffoli costs. In contrast, the Toffoli
cost of the QROM scheme is independent of the value of b.
Improved methods for distillation, especially when b is large,
could make our scheme more competitive in this application.

D. Chemistry

Coherent data access using a quantum lookup table has
become a key subroutine in modern algorithms for quantum
chemistry [76]. These algorithms assume access to a block-
encoding of the Hamiltonian. This block-encoding is typically
implemented by writing the Hamiltonian as a linear combi-
nation of unitaries H = Zf;ol ¢;U; and using oracles of the
form:

L-1

1
PREPARE [oos2(D)1y — —_ cillg (108)
|) 7 JZ:(:) lejl17)
L—1 olloga (L)1 _q
SELECT = Y _ |j)(j| @ sign(c)U; + > i)l ®L
j=0 j=L
(109)

where A = > [c;| is the normalization factor of the block-
encoding. The LCU approach to block-encodings still works if
PREPARE results in each computational basis state |j) being
entangled with a garbage register. The technique of coherent
alias sampling, introduced in Ref. [76], provides an efficient
approach for implementing PREPARE in this way, with a
cost of O (L +log (1/4)) Toffoli gates using QROM, where
0 is the largest error in \/m . The dependence on L can
be improved quadratically using the techniques of Ref. [39].
In the most straightforward application of these techniques
(referred to as “sparse qubitization” [126]) the complexity of
PREPARE dominates the algorithm, and its cost depends on
the cost to load the Hamiltonian coefficients from a quantum
lookup table.

Sparse qubitization requires O (A/A) calls to the block-
encoding of the Hamiltonian, where A is the precision on
the energy estimate of the Hamiltonian. For typical A\ values
of small molecules, in the range 10>-10* Hartree, and A =
103 Hartree, this implies at least 105 calls to the quantum
lookup table. If we were to replace the calls to the quantum
lookup table with our distillation-based QRAM scheme for
the example of FeMo-co (A = 7614, N = L = 179,498,
b = 84 [126]), using the same methodology as in the previous
section, we conclude that we would require at least 2.5 x 10!
Toffoli gates per call to the block-encoding, substantially larger
than the value of 10* Toffolis in Ref. [126]. We note that
even if the dependence of our approach on the error € per
query could be reduced to O(log(1/¢)), it is unclear whether
our approach would improve over existing methods, as the
amount of data (i.e., Lb) loaded for the chemistry Hamiltonian
is sufficiently modest that the QROM scaling of O(v/Lb) is
comparable to the scaling of our protocol O (log?(L)(log(L)+
b)) (see Appendix A of the full version [9]).

The sparse qubitization approach has been superseded
in some applications by more efficient methods [127], [128],
which also use a lookup table to coherently load angles for
basis rotations that are used in the SELECT oracle. We refer
to Refs. [128], [129] for a detailed accounting of the contri-
bution of the lookup table reads to the total gate and space

70

complexity. It is unlikely that our aproach to implementing
QRAM would reduce the costs of these algorithms, at least in
its current form.

VII. OUTLOOK ON THE CHEAP QRAM ASSUMPTION

A central goal of this research program is to determine
whether QRAM can be considered equally cheap as RAM—at
least in an abstract, asymptotic sense—or whether its quantum
nature makes QRAM fundamentally more difficult, preventing
a justification of the cheap QRAM assumption from Section I.
The central aspect of QRAM that differentiates it from RAM
is the need to protect the quantum information about which
address (or superposition of addresses) is being queried, even
when the hardware has errors. To emphasize this distinction, it
is worth noting that a fault-tolerant RAM could be easily con-
structed from a faulty RAM device using a simple repetition
code: by repeatedly querying the faulty RAM device on the
same input address, one can efficiently boost the probability of
a successful RAM query, provided that the device has nonzero
bias in favor of the correct answer. In contrast, this same
strategy fails for QRAM because even a single query to a
faulty QRAM device may leak the address information and
decohere the address register. Formally speaking, we might
say that logical (Q)RAM is a transversal gate for the repetition
code, but that this is not sufficient for fault-tolerant QRAM,
since the repetition code does not protect against phase-flip
errors. For fault-tolerant QRAM, a more sophisticated strategy
is required.

Our protocol provides such a method for fault-tolerant
QRAM, successfully protecting which address state > o, |T)
is being queried without performing QEC on the (2")
components of the QRAM device. It does this by relying
on resource states (see Eq. (9)) that are equal superpositions
of all 2" addresses, independent of which superposition of
addresses one wants to query—the noisy device is prevented
from direct interaction with the address information. However,
these resource states have exponentially small amplitude on
any individual address. Consequently, if the data at one address
is modified, the ideal resource state barely changes. This
begs the question: if these resource states are insensitive to
the underlying bits in the dataset, how, then, can they be
used to insert information about the dataset into the quantum
state? Our protocol achieves this by iteratively and adaptively
inserting global information about the dataset f—that is,
properties of f that depend on all 2™ data entries—into the
quantum state. One way to see this is by decomposing f(x)
into a sum over global, oscillatory contributions of the form
(—1)*2, that is, its Fourier expansion

@) =5 3 (DR,

ke{0,1}n

(110)

where f is the Walsh—-Hadamard transform of f. When we
teleport the resource state |¥(f)), we enact the QRAM unitary

V(f®™) instead of V (f), where m is uniformly random and
FE™ is defined by f®™(x) = f(xz & m). While the datasets

fP™ and f are not guaranteed to agree on any of the addresses,
they have a close relationship in frequency space. One can see
from Eq. (110) that

FEm (k) = (=)*™ (k).

Thus, f®™ (k) = f(k) for half the values of k and f&™ (k) =
—f(k) for the other half (except in the unlikely case that
m = 07, in which case they would agree on all values).
In a sense, we may say that by implementing V (f%™), we
have successfully inserted half of the information about the
function f into the quantum state, regardless of which random
m is obtained. To insert the other half of the information, the
protocol updates the dataset to f' = f@ f®™. We may observe
that f’ is periodic in translation by m (i.e., f'(x) = f'(x®m)
for all z), and thus f/(k) = 0 for any k for which k-m =1
(half the values of k). Each successive correction function will
have half as many nonzero Fourier components as the previous
one (assuming the n-bit measurement outcomes in previous
rounds form a linearly independent set), until finally after n
rounds there is no remaining frequency information left to
insert. This global approach to information insertion appears
crucial for correctly applying QRAM on any input state, even
while not knowing or learning what that input state is.

(111)

The cost of this global approach is adaptivity and classical
computation. At each iteration, we do not have control over
which half of the frequency information we insert into the
quantum state; this is determined by a uniformly random
measurement outcome m. After receiving m, the protocol must
adaptively update the entire dataset to essentially remove the
half of the global information that has already been applied
to the quantum state. This removal requires touching all 2"
entries of the dataset, and then giving the physical QRAM
device access to the new dataset. As discussed in Section V,
this updating of frequency information is a non-negligible
classical computation, essentially equivalent in complexity
to performing the Walsh—-Hadamard transformation on the
dataset. While the Walsh-Hadamard transform may be par-
allelizable, it appears to be a harder calculation than a normal
RAM query; for example, it requires fundamentally greater
wire density than RAM.

The main theoretical open question, then, is to determine
if the classical complexity of the protocol can be reduced
to a quantity more similar to a RAM query, or otherwise
find a way to justify that the overall (i.e., both classical and
quantum) cost of QRAM is poly(n). Our protocol makes
some progress in this direction, and it offers clear advantages
over actively error corrected circuit QRAM at the practical
level—enabling the usage of a specialized low-fidelity QRAM
device, and eliminating the need for massively parallel QEC.
However, in a theoretical sense, both our protocol and circuit
QRAM ultimately require the same §2(2") scaling of classical
resources to protect the address information from decoher-
ence. One is left to wonder whether this scaling of classical
complexity could be a fundamental requirement for achieving
fault-tolerant QRAM.

71

ACKNOWLEDGMENT

The authors thank Mario Berta, Joe Iverson, Sam Jaques,
Michael Kastoryano, Fernando Pastawski, Samson Wang, and
John Wright for helpful conversations. We also thank Simone
Severini, James Hamilton, Nafea Bshara, Peter DeSantis, and
Andy Jassy for their involvement and support of the research
activities at the AWS Center for Quantum Computing.

REFERENCES

F. C. Williams and T. Kilburn, “Electronic digital computers,” Nature,
vol. 162, no. 4117, pp. 487-487, 1948.

W. E. C. and K. T., “A storage system for use with binary-digital com-
puting machines,” Proceedings of the IEE—Part II: Power Engineering,
vol. 96, no. 50, pp. 183-200, 2025/03/17 1949.

Engineering and Technology History Wiki, “Milestones: Manchester
University “Baby” computer and its derivatives, 1948-1951,” 2022,
https://ethw.org/Milestones:Manchester_University_%22Baby%22_C
omputer_and_its_Derivatives,_1948-1951, accessed 2025-03-17.

S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney, S. Shao, and
A. Gholami, “Full stack optimization of transformer inference,” in
Architecture and System Support for Transformer Models (ASSYST),
2023, https://openreview.net/forum?id=GtyQbLUUagE, accessed:
2025-03-17. arXiv:2302.14017.

C. Silvano, D. Ielmini, F. Ferrandi, L. Fiorin, S. Curzel, L. Benini,
F. Conti, A. Garofalo, C. Zambelli, E. Calore, S. Schifano, M. Palesi,
G. Ascia, D. Patti, N. Petra, D. De Caro, L. Lavagno, T. Urso,
V. Cardellini, G. Cardarilli, R. Birke, and S. Perri, “A survey on
deep learning hardware accelerators for heterogeneous HPC platforms,”
ACM Comput. Surv., 4 2025, arXiv:2306.15552.

Infineon, “CY7C1069G-10BVXIT,” 2025, https://www.infineon.com/
cms/en/product/memories/sram- static-ram/asynchronous-sram/cy7c¢10
69g-10bvxit/, accessed: 2025-03-17.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random ac-
cess memory,” Phys. Rev. Lett., vol. 100, no. 16, p. 160501, 2008,
arXiv:0708.18709.

S. Jaques and A. G. Rattew, “QRAM: A survey and critique,” 2023,
arXiv:2305.10310.

A. M. Dalzell, A. Gilyén, C. T. Hann, S. McArdle, G. Salton,
Q. T. Nguyen, A. Kubica, and F. G. S. L. Brandio, “A
distillation-teleportation protocol for fault-tolerant QRAM,” 2025,
arXiv:2505.20265 (Full version of this paper).

C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto,
S. Severini, and L. Wossnig, “Quantum machine learning: A classical
perspective,” Proc. R. Soc. A, vol. 474, no. 2209, p. 20170551, 2018,
arXiv:1707.08561.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, pp. 195-202,
2017, arXiv:1611.09347.

A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, C.-F. Chen, A. Gilyén,
C. T. Hann, M. J. Kastoryano, E. T. Khabiboulline, A. Kubica,
G. Salton, S. Wang, and F. G. S. L. Branddo, Quantum algorithms:
A survey of applications and end-to-end complexities. — Cambridge
University Press, 2025, arXiv:2310.03011.

(2]

[3

=

(4]

[5

[l

[6

=

(71

[8

—

[10]

[11]

[12]

[13] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Phys. Rev. Lett., vol. 113, no. 13,

p. 130503, 2014, arXiv:1307.0471.

Z. Zhao, J. K. Fitzsimons, and J. F. Fitzsimons, “Quantum-assisted
Gaussian process regression,” Phys. Rev. A, vol. 99, no. 5, p. 052331,
2019, arXiv:1512.039209.

I. Kerenidis and A. Prakash, “Quantum recommendation systems,” in
ITCS, 2017, pp. 49:1-49:21, arXiv:1603.08675.

D. W. Berry, “High-order quantum algorithm for solving linear dif-
ferential equations,” J. Phys. A, vol. 47, no. 10, p. 105301, 2014,
arXiv:1010.2745.

[14]

[15]

[16]

[17]

[18]

(191

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang, “Quantum
algorithm for linear differential equations with exponentially improved
dependence on precision,” Commun. Math. Phys., vol. 356, no. 3, pp.
1057-1081, 2017, arXiv:1701.03684.

A. M. Childs and J.-P. Liu, “Quantum spectral methods for differential
equations,” Commun. Math. Phys., vol. 375, no. 2, pp. 1427-1457,
2020, arXiv:1901.00961.

H. Krovi, “Improved quantum algorithms for linear and non-
linear differential equations,” Quantum, vol. 7, p. 913, 2023,
arXiv:2202.01054.

D. Jennings, M. Lostaglio, R. B. Lowrie, S. Pallister, and A. T.
Sornborger, “The cost of solving linear differential equations on a quan-
tum computer: Fast-forwarding to explicit resource counts,” Quantum,
vol. 8, p. 1553, 12 2024, arXiv:2309.07881.

D. W. Berry and P. C. S. Costa, “Quantum algorithm for time-
dependent differential equations using Dyson series,” Quantum, vol. 8,
p. 1369, 6 2024, arXiv:2212.03544.

A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, p.
150502, 2009, arXiv:0811.3171.

F. G. S. L. Brandio and K. M. Svore, “Quantum speed-ups
for solving semidefinite programs,” in FOCS, 2017, pp. 415-426,
arXiv:1609.05537.

F. G. S. L. Branddo, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore,
and X. Wu, “Quantum SDP solvers: Large speed-ups, optimality, and
applications to quantum learning,” in /CALP, 2019, pp. 27:1-27:14,
arXiv:1710.02581.

J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf, “Quantum
SDP-solvers: Better upper and lower bounds,” Quantum, vol. 4, p. 230,
2020, earlier version in FOCS’17. arXiv:1705.01843.

J. van Apeldoorn and A. Gilyén, “Quantum algorithms for zero-sum
games,” 2019, arXiv:1904.03180.

——, “Improvements in quantum SDP-solving with applications,” in
ICALP, 2019, pp. 99:1-99:15, arXiv:1804.05058.

I. Kerenidis and A. Prakash, “A quantum interior point method for
LPs and SDPs,” ACM Trans. Quantum Comput., vol. 1, no. 1, 2020,
arXiv:1808.09266.

I. Kerenidis, A. Prakash, and D. Szildgyi, “Quantum algorithms for
second-order cone programming and support vector machines,” Quan-
tum, vol. 5, p. 427, 2021, arXiv:1908.06720.

B. Augustino, G. Nannicini, T. Terlaky, and L. F. Zuluaga, “Quantum
interior point methods for semidefinite optimization,” Quantum, vol. 7,
p. 1110, 9 2023, arXiv:2112.06025.

I. Kerenidis, A. Prakash, and D. Szildgyi, “Quantum algorithms for
portfolio optimization,” in AFT. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 147-155, arXiv:1908.08040.

A. M. Dalzell, B. D. Clader, G. Salton, M. Berta, C. Y.-Y. Lin, D. A.
Bader, N. Stamatopoulos, M. J. A. Schuetz, F. G. S. L. Brandao,
H. G. Katzgraber, and W. J. Zeng, “End-to-end resource analysis
for quantum interior-point methods and portfolio optimization,” PRX
Quantum, vol. 4, p. 040325, 11 2023, arXiv:2211.12489.

S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and
P. V. Srinivasan, “On the robustness of bucket brigade quantum RAM,”
New J. Phys., vol. 17, no. 12, p. 123010, 2015, arXiv:1502.03450.

D. S. Steiger and M. Troyer, “Racing in parallel: Quantum versus
classical,” in APS March Meeting Abstracts, vol. 2016, 2016, pp. H44—
010.

O. Di Matteo, V. Gheorghiu, and M. Mosca, “Fault-tolerant resource
estimation of quantum random-access memories,” IEEE Trans. Quan-
tum Eng., vol. 1, pp. 1-13, 2020, arXiv:1902.01329.

A. Paler, O. Oumarou, and R. Basmadjian, “Parallelizing the queries
in a bucket-brigade quantum random access memory,” Phys. Rev. A,
vol. 102, p. 032608, 9 2020, arXiv:2002.09340.

C. T. Hann, G. Lee, S. Girvin, and L. Jiang, “Resilience of quantum
random access memory to generic noise,” PRX Quantum, vol. 2, p.
020311, 4 2021, arXiv:2012.05340.

72

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

P. Mukhopadhyay, “A quantum random access memory (qram) using
a polynomial encoding of binary strings,” Sci. Rep., vol. 15, no. 1, p.
11002, 2025, arXiv:2408.16794.

G. H. Low, V. Kliuchnikov, and L. Schaefter, “Trading T gates for dirty
qubits in state preparation and unitary synthesis,” Quantum, vol. 8, p.
1375, 6 2024, arXiv:1812.00954.

R. C. Jaeger and T. N. Blalock, Microelectronic circuit design, 5th ed.
McGraw-Hill New York, 2016, vol. 97.

Y. Wang, Y. Alexeev, L. Jiang, F. T. Chong, and J. Liu, “Fundamental
causal bounds of quantum random access memories,” npj Quant. Inf.,
vol. 10, no. 1, p. 71, 2024, arXiv:2307.13460.

B. Zeng, X. Chen, and I. L. Chuang, “Semi-Clifford operations,
structure of Cj, hierarchy, and gate complexity for fault-tolerant quan-
tum computation,” Phys. Rev. A, vol. 77, no. 4, p. 042313, 2008,
arXiv:0712.2084.

M. B. Hastings and J. Haah, “Distillation with sublogarithmic
overhead,” Phys. Rev. Lett., vol. 120, no. 5, p. 050504, 2018,
arXiv:1709.03543.

A. Kubica and M. E. Beverland, “Universal transversal gates with color
codes: A simplified approach,” Phys. Rev. A, vol. 91, p. 032330, 2015,
arXiv:1410.0069.

S. Koutsioumpas, D. Banfield, and A. Kay, “The smallest code with
transversal T,” 2022, arXiv:2210.14066.

G. Kuperberg, “Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem,” in TQC, ser. Leibniz International
Proceedings in Informatics (LIPIcs), S. Severini and F. Brandao, Eds.,
vol. 22. Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2013, pp. 20-34, arXiv:1112.3333.

S. X. Cui, D. Gottesman, and A. Krishna, “Diagonal gates in
the Clifford hierarchy,” Phys. Rev. A, vol. 95, p. 012329, 1 2017,
arXiv:1608.06596.

D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code
quantum computing by lattice surgery,” New J. Phys., vol. 14, no. 12,
p. 123011, 2012, arXiv:1111.4022.

Y. Li, “A magic state’s fidelity can be superior to the operations
that created it,” New J. Phys., vol. 17, no. 2, p. 023037, 2015,
arXiv:1410.7808.

J. Lodyga, P. Mazurek, A. Grudka, and M. Horodecki, “Simple
scheme for encoding and decoding a qubit in unknown state for
various topological codes,” Sci. Rep., vol. 5, no. 1, p. 8975, 2015,
arXiv:1404.2495.

D. Litinski, “Magic state distillation: Not as costly as you think,”
Quantum, vol. 3, p. 205, 12 2019, arXiv:1905.06903.

S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, no. 2, p.
022316, 2005, arXiv:quant-ph/0403025.

E. Knill, “Fault-tolerant postselected quantum computation: Schemes,”
2004, arXiv:quant-ph/0402171.

H. Bombin and M. A. Martin-Delgado,
tum distillation,” Phys. Rev. Lett., vol. 97, p.
arXiv:quant-ph/0605138.

A. Kubica, B. Yoshida, and F. Pastawski, “Unfolding the color code,”
New J. Phys., vol. 17, no. 8, p. 083026, 2015, arXiv:1503.02065.

J. E. Moussa, “Transversal Clifford gates on folded surface codes,”
Phys. Rev. A, vol. 94, p. 042316, 2016, arXiv:1603.02286.

“Topological
180501,

quan-
2006,

D. Litinski, “A game of surface codes: Large-scale quantum com-
puting with lattice surgery,” Quantum, vol. 3, p. 128, 3 2019,
arXiv:1808.02892.

C. Gidney and A. G. Fowler, “Flexible layout of surface code compu-
tations using AutoCCZ states,” 2019, arXiv:1905.08916.

M. Beverland, E. Campbell, M. Howard, and V. Kliuchnikov,
“Lower bounds on the non-Clifford resources for quantum compu-
tations,” Quantum Sci. Technol., vol. 5, no. 3, p. 035009, 2020,
arXiv:1904.01124.

[60]

[62]

[63]

[64]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[76]

(81]

D. Gottesman and I. L. Chuang, “Demonstrating the viability
of universal quantum computation using teleportation and single-
qubit operations,” Nature, vol. 402, no. 6760, pp. 390-393, 1999,
arXiviquant-ph/9908010.

M. Christandl, O. Fawzi, and A. Goswami, “Fault-tolerant quantum
input/output,” 2024, arXiv:2408.05260.

A. Wills, M.-H. Hsieh, and H. Yamasaki, “Constant-overhead magic
state distillation,” 2024, arXiv:2408.07764.

Q. T. Nguyen, “Good binary quantum codes with transversal CCZ
gate,” 2024, arXiv:2408.10140.

L. Golowich and V. Guruswami, “Asymptotically good quantum codes
with transversal non-Clifford gates,” 2024, arXiv:2408.09254.

J. I. Cirac, A. K. Ekert, and C. Macchiavello, “Optimal purification
of single qubits,” Phys. Rev. Lett., vol. 82, pp. 4344-4347, 5 1999,
arXiviquant-ph/9812075.

M. Keyl and R. F. Werner, “The rate of optimal purification pro-
cedures,” Annales Henri Poincaré, vol. 2, no. 1, pp. 1-26, 2001,
arXiv:quant-ph/9910124.

J. Fiurasek, “Optimal probabilistic cloning and purification of
quantum states,” Phys. Rev. A, vol. 70, p. 032308, 9 2004,
arXiviquant-ph/0403165.

H. Fu, “Quantum state purification,” Master’s thesis, University of
Waterloo, 2016.

A. M. Childs, H. Fu, D. Leung, Z. Li, M. Ozols, and V. Vyas,
“Streaming quantum state purification,” Quantum, vol. 9, p. 1603, 2025,
arXiv:2309.16387.

Z. Li, H. Fu, T. Isogawa, and I. Chuang, “Optimal quantum purity
amplification,” 2024, arXiv:2409.18167.

D. Grier, D. Leung, Z. Li, H. Pashayan, and L. Schaeffer, “Stream-
ing quantum state purification for general mixed states,” 2025,
arXiv:2503.22644.

S. Irani, A. Natarajan, C. Nirkhe, S. Rao, and H. Yuen, “Quantum
search-to-decision reductions and the state synthesis problem,” in CCC,
ser. CCC ’22. Dagstuhl, DEU: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2022, arXiv:2111.02999.

S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal
component analysis,” Nat. Phys., vol. 10, pp. 631-633, 2014,
arXiv:1307.0401.

S. Kimmel, C. Y.-Y. Lin, G. H. Low, M. Ozols, and T. J. Yoder,
“Hamiltonian simulation with optimal sample complexity,” npj Quant.
Inf., vol. 3, no. 1, p. 13, 2017, arXiv:1608.00281.

R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo,
and H. Neven, “Focus beyond quadratic speedups for error-corrected
quantum advantage,” PRX Quantum, vol. 2, p. 010103, 3 2021,
arXiv:2011.04149.

R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler,
A. Fowler, and H. Neven, “Encoding electronic spectra in quantum
circuits with linear T complexity,” Phys. Rev. X, vol. 8, no. 4, p. 041015,
2018, arXiv:1805.03662.

V. Giovannetti, S. Lloyd, and L. Maccone, “Architectures for a quantum
random access memory,” Phys. Rev. A, vol. 78, no. 5, p. 052310, 2008,
arXiv:0807.4994.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge University Press, 2000.

D. Weiss, S. Puri, and S. Girvin, “Quantum random access memory
architectures using 3d superconducting cavities,” PRX Quantum, vol. 5,
no. 2, p. 020312, 2024, arXiv:2310.08288.

C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M.
Girvin, and L. Jiang, “Hardware-efficient quantum random access
memory with hybrid quantum acoustic systems,” Phys. Rev. Lett., vol.
123, no. 25, p. 250501, 2019, arXiv:1906.11340.

Z. Wang, H. Qiao, A. N. Cleland, and L. Jiang, “Quantum ran-
dom access memory with transmon-controlled phonon routing,” 2024,
arXiv:2411.00719.

73

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

[101]

[102]

[103]

A. Sala Cadellans, “A transmon based quantum switch for a quantum
random access memory,” Master’s thesis, Leiden University, 2015.

K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund,
“Scalable and high-fidelity quantum random access memory in spin-
photon networks,” PRX Quantum, vol. 2, no. 3, p. 030319, 2021,
arXiv:2103.07623.

F.-Y. Hong, Y. Xiang, Z.-Y. Zhu, L.-z. Jiang, and L.-n. Wu, “Robust
quantum random access memory,” Phys. Rev. A, vol. 86, no. 1, p.
010306, 2012, arXiv:1201.2250.

F. Cesa, H. Bernien, and H. Pichler, “Fast and error-correctable
quantum RAM,” 2025, arXiv:2503.19172.

W. J. Huggins, T. Khattar, and N. Wiebe, “Productionizing quantum
mass production,” 2025, arXiv:2506.00132.

Z. Ji, Y-K. Liu, and F. Song, “Pseudorandom quantum states,” in
CRYPTO, H. Shacham and A. Boldyreva, Eds. Cham: Springer
International Publishing, 2018, pp. 126-152, arXiv:1711.00385.

Z. Brakerski and O. Shmueli, “(Pseudo) random quantum states with
binary phase,” in Theory of Cryptography, D. Hotheinz and A. Rosen,
Eds. Cham: Springer International Publishing, 2019, pp. 229-250,
arXiv:1906.10611.

S. Arunachalam, S. Bravyi, A. Dutt, and T. J. Yoder, “Optimal
algorithms for learning quantum phase states,” in TQC, ser. Leib-
niz International Proceedings in Informatics (LIPIcs), O. Fawzi and
M. Walter, Eds., vol. 266. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2023, pp. 3:1-3:24, arXiv:2208.07851.

D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation
with constant error rate,” STIAM J. Comp., vol. 38, no. 4, pp. 1207-1282,
7 2008, earlier version in STOC’97. arXiv:quant-ph/9906129.

P. W. Shor, “Fault-tolerant quantum computation,” in FOCS. IEEE
Comput. Soc. Press, 1996, pp. 56-65, arXiv:quant -ph/9605011.

D. Gottesman, “Fault-tolerant quantum computation with constant
overhead,” Quantum Inf. Comput., vol. 14, no. 15-16, pp. 1338-1372,
2014, arXiv:1310.2984.

, “An introduction to quantum error correction and fault-tolerant
quantum computation,” in Proceedings of Symposia in Applied Math-
ematics, vol. 68, 2010, pp. 13-58, arXiv:0904.2557.

O. Fawzi, A. Grospellier, and A. Leverrier, “Constant overhead quan-
tum fault tolerance with quantum expander codes,” Commun. ACM,
vol. 64, no. 1, p. 106-114, 12 2020, earlier version in FOCS’IS8.
arXiv:1808.03821.

H. Yamasaki and M. Koashi, “Time-efficient constant-space-overhead
fault-tolerant quantum computation,” Nat. Phys., vol. 20, no. 2, pp.
247-253, 2024, arXiv:2207.08826.

Q. T. Nguyen and C. A. Pattison, “Quantum fault toler-
ance with constant-space and logarithmic-time overheads,” 2024,
arXiv:2411.03632.

C. Dankert, “Efficient simulation of random quantum states and oper-
ators,” 2005, arXiviquant-ph/0512217.

S. T. Flammia and J. J. Wallman, “Efficient estimation of Pauli
channels,” ACM Trans. Quantum Comput., vol. 1, no. 1, 12 2020,
arXiv:1907.12976.

J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum
computation via randomized compiling,” Phys. Rev. A, vol. 94, p.
052325, 11 2016, arXiv:1512.01098.

R. Mehta, G. Lee, and L. Jiang, “Analysis and suppression of errors in
quantum random access memory errors under extended noise models,”
2024, arXiv:2412.10318.

C. J. Wood, J. D. Biamonte, and D. G. Cory, “Tensor networks and
graphical calculus for open quantum systems,” Quantum Inf. Comput.,
vol. 15, no. 9-10, pp. 759-811, 2015, arXiv:1111.6950.

A. Y. Kitaev, “Quantum measurements and the abelian stabilizer
problem,” 1995, arXiviquant-ph/9511026.

Y. Chen, A. Gilyén, and R. de Wolf, “A quantum speed-up for
approximating the top eigenvectors of a matrix,” in SODA, 2025, pp.
994-1036, arXiv:2405.14765.

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

N. S. Mande and R. de Wolf, “Tight bounds for quantum phase
estimation and related problems,” in ESA, vol. 274, 2023, pp. 81:1—
81:16, arXiv:2305.04908.

N. Wiebe and C. Granade, “Efficient Bayesian phase estimation,” Phys.
Rev. Lett., vol. 117, no. 1, p. 010503, 2016, arXiv:1508.00869.

A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value
transformation and beyond: Exponential improvements for quantum
matrix arithmetics,” in STOC, 2019, pp. 193-204, full version in
arXiv:1806.01838.

Y. Dong, L. Lin, and Y. Tong, “Ground-state preparation and energy
estimation on early fault-tolerant quantum computers via quantum
eigenvalue transformation of unitary matrices,” PRX Quantum, vol. 3,
no. 4, p. 040305, 2022, arXiv:2204.05955.

M. Ajtai, J. Komlés, and E. Szemerédi, “An o(nlogn) sorting net-
work,” in STOC, ser. STOC ’83. New York, NY, USA: Association
for Computing Machinery, 1983, p. 1-9.

R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden,
D. Shepherd, and M. Stather, “Efficient distributed quantum com-
puting,” Proc. R. Soc. A, vol. 469, no. 2153, p. 20120686, 2013,
arXiv:1207.2307.

B. D. Clader, A. M. Dalzell, N. Stamatopoulos, G. Salton, M. Berta,
and W. J. Zeng, “Quantum resources required to block-encode a matrix
of classical data,” IEEE Trans. Quantum Eng., vol. 3, pp. 1-23, 2022,
arXiv:2206.03505.

L. Lin, “Lecture notes on quantum algorithms for scientific computa-
tion,” 2022, arXiv:2201.083009.

E. Tang, “A quantum-inspired classical algorithm for recommendation
systems,” in STOC, 2019, pp. 217-228, arXiv:1807.04271.

——, “Quantum principal component analysis only achieves an expo-
nential speedup because of its state preparation assumptions,” Phys.
Rev. Lett., vol. 127, no. 6, p. 060503, 2021, arXiv:1811.00414.

N.-H. Chia, A. P. Gilyén, T. Li, H.-H. Lin, E. Tang, and C. Wang,
“Sampling-based sublinear low-rank matrix arithmetic framework for
dequantizing quantum machine learning,” J. ACM, vol. 69, no. 5, pp.
1-72, 2022, earlier version in STOC’20. arXiv:1910.06151.

C. Shao and A. Montanaro, “Faster quantum-inspired algorithms for
solving linear systems,” ACM Trans. Quantum Comput., vol. 3, no. 4,
2022, arXiv:2103.10309.

E. Tang, “Dequantizing algorithms to understand quantum advantage
in machine learning,” Nat. Rev. Phys., vol. 4, no. 11, pp. 692-693,
2022.

——, “Quantum machine learning without any quantum,” Ph.D. dis-
sertation, University of Washington, 2023.

H. Yamasaki, S. Subramanian, S. Sonoda, and M. Koashi, “Learning
with optimized random features: Exponential speedup by quantum
machine learning without sparsity and low-rank assumptions,” in
NeurIPS, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 13674—
13687, arXiv:2004.10756.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. Natl. Bur. Stand., vol. 49, no. 6, pp.
409-435, 1952.

W. Hackbusch, Iterative solution of large sparse systems of equations,
2nd ed. Springer, 2016, vol. 95.

D. Orsucci and V. Dunjko, “On solving classes of positive-
definite quantum linear systems with quadratically improved run-
time in the condition number,” Quantum, vol. 5, p. 573, 11 2021,
arXiv:2101.11868.

C. Gidney, “Windowed
arXiv:1905.07682.

C. Gidney and M. Ekerd, “How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 4 2021,
arXiv:1905.09749.

T. Hiner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken,
“Improved quantum circuits for elliptic curve discrete logarithms,” in
PQCrypto, J. Ding and J.-P. Tillich, Eds. Cham: Springer International
Publishing, 2020, pp. 425-444, arXiv:2001.09580.

quantum arithmetic,” 2019,

74

[125]

[126]

[127]

[128]

[129]

D. Litinski, “How to compute a 256-bit elliptic curve private key with
only 50 million Toffoli gates,” 2023, arXiv:2306.08585.

D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush,
“Qubitization of arbitrary basis quantum chemistry leveraging sparsity
and low rank factorization,” Quantum, vol. 3, p. 208, 12 2019,
arXiv:1902.02134.

V. von Burg, G. H. Low, T. Hiner, D. S. Steiger, M. Reiher,
M. Roetteler, and M. Troyer, “Quantum computing enhanced com-
putational catalysis,” Phys. Rev. Res., vol. 3, no. 3, p. 033055, 2021,
arXiv:2007.14460.

J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean,
N. Wiebe, and R. Babbush, “Even more efficient quantum computations
of chemistry through tensor hypercontraction,” PRX Quantum, vol. 2,
p. 030305, 7 2021, arXiv:2011.03494.

I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, and E. Lee,
“Fault-tolerant resource estimate for quantum chemical simulations:
Case study on Li-ion battery electrolyte molecules,” Phys. Rev. Res.,
vol. 4, p. 023019, 4 2022, arXiv:2104.10653.

